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Abstract. A period is the difference between the volumes of two semi-
algebraic sets. Recent research has located their worst-case complexity
in low levels of the Grzegorczyk Hierarchy. The present work introduces,
analyzes, and evaluates three rigorous algorithms for rigorously comput-
ing periods: a deterministic, a randomized, and a ‘transcendental’ one.
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1 Introduction

A period is the absolutely convergent integral of a multivariate rational function
with integer coefficients over Euclidean domains given by polynomial inequalities
with integer coefficients [KZ01]:

∫
∆

p(x1, . . . , xd)
q(x1, . . . , xd)

dx1 ⋯ dxd , (1)

where ∆ ⊆ Rd is a Boolean combination of strict and non-strict polynomial
inequalities pj(x⃗) > 0 and qi(x⃗) ≥ 0 over, like p and q, integer coefficients:
p, q, p1, . . . , pJ , q1, . . . , qI ∈ Z[X1,⋯,Xd]. Periods are receiving increasing inter-
est in Algebraic Model Theory as they have finite descriptions (the polynomials’
coefficients) and include all algebraic reals as well as some transcendentals:

√
2 = ∫

t∶2t2≤1
t dt, ln(x) =

x

∫
1

1/t dt = ∫
t≤x,s⋅t≤1

1dsdt, π = ∫
x2+y2≤1

1dxdy (2)

Every period can be expressed as difference of two semi-algebraic volumes:
For co-prime p, q ∈ Z[X1, . . . ,Xd], Equation (1) translates to

∫
∆p,q,+

1dx⃗ dy − ∫
∆p,q,−

1dx⃗ dy = vol(∆p,q,+) − vol(∆p,q,−) , (3)

∗Based on ideas presented at CCA 2017, this work was supported by the National
Research Foundation of Korea (grant NRF-2017R1E1A1A03071032) and the Interna-
tional Research & Development Program of the Korean Ministry of Science and ICT
(grant NRF-2016K1A3A7A03950702). We thank the anonymous referees for feedback!
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where ∆p,q,+ ∶= {(x⃗, y) ∶ 0 ≤ y ⋅ q(x⃗) ≤ p(x⃗) ∧ q(x⃗) > 0} ∪ {(x⃗, y) ∶ 0 ≥ y ⋅ q(x⃗) ≥
p(x⃗)∧q(x⃗) < 0} and ∆p,q,− ∶= {(x⃗, y) ∶ 0 ≥ y ⋅q(x⃗) ≥ p(x⃗)∧q(x⃗) > 0} ∪ {(x⃗, y) ∶
0 ≤ y ⋅q(x⃗) ≤ p(x⃗)∧q(x⃗) < 0}. Note that ∆p,q,+,∆p,q,− ⊆ Rd+1 may be unbounded
even when ∆ was bounded. However by means of Singularity Resolution one can
w.l.o.g. restrict to compact domains [VS17, Theorem 1.1]. This shows that sum
and (Cartesian) product of periods are again periods.

Many interesting open questions evolve around periods; for instance [KZ01,
Problem 1] of whether there exists an algorithm that, given two representa-
tions of periods, decides whether they are equal or not? Or [KZ01, Problem 3]
asking for an ‘explicit’ example of a real number that is not a period. Inner-
mathematical candidates are 1/π and e = ∑n 1/n!, but proving so seems infeasi-
ble with the current methods. The family of (semi-algebraic domains and thus
also of) periods being countable, non-periods must be abundant.

In fact every period is computable in the sense of Recursive Analysis [Tur37,
Wei00]; therefore any uncomputable real, such as the Halting Problem encoded
in binary or random reals [BDC01] like Chaitin’s Ω, cannot be periods. More
precisely each period is of lower elementary complexity in Grzegorczyk’s Hierar-
chy [Yos08, TZ10, SWG12]. Note that such improved upper complexity bounds
give rise to more candidates of non-periods.

Problem 1. Characterize the computational complexity of periods!

Moreover efficient algorithms for computing (i.e. producing guaranteed high-
precision approximations to) periods enable Experimental Mathematics [KZ01,
Problem 2]; cmp. [Bai17].

We present three such algorithms: a deterministic one, a randomized (Las
Vegas) one, and a transcendental one (to be clarified below). We prove them
correct; describe their implementation in the convenient Exact Real Computation
paradigm; estimate their cost in the (possibly unrealistic) unit cost model; and
empirically analyze and compare their behaviour in terms of the output precision
and the degree of the polynomial involved.

Subsection 1.1 recalls central notions, properties, and practice of real compu-
tation; Subsection 1.2 puts things in perspective to related work. Our algorithms
are presented, and proven correct, in Section 2. In Section 3 we introduce our im-
plementation, performance measurements, and their evaluation/interpretation.
Section 4 expands on future work.

1.1 Real Computation

Regular floating-point arithmetic incurs rounding errors that accumulate over
time and hamper reliable computations. Interval calculations keep track of the
error bounds — which may blow up beyond use and due to overlap render
comparisons meaningless. The present work peruses the iRRAM C++ library
[Mül01, MZ14], providing real numbers as abstract data type with exact op-
erations and partial comparison: A test “y > 0” freezes in case y = 0.
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Indeed it is well-known from Recursive Analysis that equality of real (and not
just algebraic) numbers is equivalent to the complement of the Halting Prob-
lem [Wei00, Exercise 4.2.9]. Here, computing y ∈ R means to produce dyadic
approximations an/2n, an ∈ Z, to y up to absolute error 1/2n; similarly for real
arguments x.

To write total programs in spite of comparison being partial, a parallel
disjunction is provided: calling the non-deterministic or multivalued ‘function’
choose(x1 > 0, . . . , xk > 0) returns some integer j such that xj > 0 holds, pro-
vided such j exists.

Subject to this modified semantics of tests, Exact Real Computation allows to
conveniently process real arguments and intermediate results as entities, näıvely
without precision considerations. On the other hand the output/return value of
a function in iRRAM merely needs to be provided in approximation up to absolute
error 2p for any parameter p ∈ Z passed. The following algorithm demonstrates
this paradigm with the trisection method for finding the (promised unique and
simple) root of a given continuous function f ∶ [0; 1] → [−1; 1] while avoiding the
sign test “0 < f(a) ⋅ f(b′)” to fail in case b′ already happens to be a root:

Algorithm REAL Trisection(INTEGER p, REAL→ REAL f)

1: REAL ∋ a ∶= 0; REAL ∋ b ∶= 1

2: while choose ( b − a > 2p−1 , 2p > b − a) == 1 do

3: REAL a′ ∶= 2
3
a + 1

3
b; REAL b′ ∶= 1

3
a + 2

3
b;

4: if choose ( 0 > f(a) ⋅ f(b′) , 0 > f(a′) ⋅ f(b)) == 1

5: then b ∶= b′ else a ∶= a′ end if

6: end while; return a

Remark 2. A caveat, in Exact Real Computation the bit — as opposed to unit
— cost of each operation may well depend on the value (and internal precision)
of the data being processed. For instance a sign test “x > 0” will take time
between linear and quadratic in n ≈ log2(1/∣x∣): to obtain the dyadic approxi-
mation an/2n of x up to error 2−n and verify it to be strictly larger than 2−n.
Similarly, a a parallel test choose(x1 > 0, . . . , xk > 0) will take time roughly
k ⋅minj<k log(1/∣xj ∣).

1.2 Periods and their Computational Complexity

It has been shown that periods are of lower elementary complexity [TZ10,
SWG12]. The present subsection recalls this and related notions with their con-
nections to resource-bounded complexity.

In Grzegorczyk’s Hierarchy, Lower Elementary means the smallest class of
total multivariate functions f ∶ Nd → N = {0,1,2,⋯} containing the constants,
projections, successor, modified difference x � y = max{x − y,0}, and is closed
under composition and bounded summation f(x⃗, y) = ∑yz=0 g(x⃗, z).
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We write M2 = E2 for the smallest class of such f containing the constants,
projections, successor, modified difference, binary multiplication, and closed un-
der both composition and bounded search µ(f)(x⃗, y) = min{z ≤ y ∶ f(z̄, z) = 0}.

A real number r is lower elementary if there exist lower elementary integer

functions f, g, h ∶ N → N with ∣r − f(N)−g(N)
h(N) ∣ < 1/N for all N > 0; similarly for a

real number in M2.
A real number r is computable in time t(n) and space s(n) if a Turing

machine can, given n ∈ N and within these resource bounds, produce some an ∈ Z
with ∣r − an/2n∣ ≤ 2−n [Ko91].

Fact 3 a) All functions fromM2 are lower elementary; and the latter functions
grow at most polynomially in the value of the arguments. In terms of the bi-
nary input length and with respect to bit-cost, lower elementary functions are
computable using a linear amount of memory for intermediate calculations
and output, that is, they belong to the complexity class FSPACE(n).

b) FSPACE(n) is closed under bounded summation and therefore coincides with
the class of lower elementary functions. The 0/1-valued functions (that is,
decision problems) in M2 exhaust the class SPACE(n) [Rit63, §4]; cmp.
[Kut87].

c) π and e = ∑n 1/n! and Liouville’s transcendental number L = ∑n 10−n! and
the Euler-Mascheroni Constant γ = limn ( − ln(n) + ∑nk=1 1/k) are all lower
elementary [Sko08, §3].

d) The set of lower elementary real numbers constitutes a real closed field: Bi-
nary sum and product and reciprocal of lower elementary real numbers, as
well as any real root of a non-zero polynomial with lower elementary coeffi-
cients, are again lower elementary [SWG12, Theorem 2].

e) Arctan, natural logarithm and exponential as well as Γ and ζ function map
lower elementary reals to lower elementary reals [TZ10, §9].

f) Natural logarithm maps periods to periods; ζ(s) is a period for every integer
s ≥ 2 [KZ01, §1.1].

g) Periods are lower elementary [TZ10, Corollary 6.4].
h) Given a Boolean expression ϕ(x1,⋯, xm) as well as the degrees and coeffi-

cients of the polynomials pj defining its constituents Spj , deciding whether

the semi-algebraic set ϕ(Sp1 ,⋯, Spm) is non-empty/of given dimension [Koi99]

is complete for the complexity class NP0
R ⊇ NP.

Item a) follows by structural induction. Together with b) it relates resource-
oriented to Grzegorczyk’s structural Complexity Theory. Note that the hardness
Result h) does not seem to entail a lower bound on the problem of approximat-
ing a fixed volume; in fact many of the usual reductions among real algebraic
decision problems [Mee06] fail under volume considerations. Common efficient
and practical algorithms tailored for approximating L, e, γ, or the period π do
so up to absolute error 1/N ∶= 2−n within time polynomial in the binary pre-
cision parameter n = log2N [Kan03]; whereas the best runtime bound known
for SPACE(n) is only exponential [Pap94, Problem 7.4.7]. On the other hand
exponential-time algorithms may well be practical [FG06, KF10].
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2 Our Algorithms and their Analyses

In view of Equation (3) and Subsections 1.1+1.2, this section devises and an-
alyzes algorithms that approximate, up to guaranteed absolute error 2−n, the
volume of the set of solutions x⃗ to a (given) disjunction of m conjunctions of
monic polynomial inequalities, each of maximum degree ≤ k in d variables with
integer coefficients between −2` and +2`.

By appropriate integer scaling and shifting, it suffices to restrict to the unit
cube [0; 1)d and to strict inequalities; see Fact 5a) below. The common basic
idea underlying all of our algorithms is to divide [0; 1]d into sub-cubes

Qc⃗,N ∶= [ c⃗
N

; c⃗+1⃗
N

) = ∏
d

i=1 [
ci
N

; ci+1
N

), c⃗ ∈ [N]d , (4)

where [N] ∶= {0, . . . ,N − 1} and 1⃗ ∶= (1, . . . ,1); then determine the signs of the
polynomials pj in some point x⃗c⃗,N ∈ Qc⃗,N ; and count those, where the constraints
pj(x⃗c⃗,N) > 0 are met, with uniform weight vol(Qc⃗,N) = N−d.

However (I) a polynomial’s sign may vary within a Qc⃗,N , the above approach
can incur an error. Moreover (II) x⃗c⃗,N may happen to be (close to) a root of pj ;
in which case determining the sign of pj(x⃗c⃗,N) may take long in terms of bit-
cost, or fail entirely. The sequel describes our approaches to still achieve totally
correct algorithms: Subsection 2.1 takes care of (I), while Subsections 2.3, 2.2,
and 2.4 describe three different approaches to avoid (II).

2.1 Recap on Real Algebraic Geometry

Regarding (I) in the case d = 1 a sign change can affect, namely occur in, at most
m ⋅ k of the sub-intervals Qc,N : because each of the m univariate polynomials
of degree ≤ k can have at most k roots. So taking N ≥ m ⋅ k ⋅ 2n guarantees the
required error bound 2−n. A multivariate polynomial on the other hand may
have infinitely many roots — which however can form only a bounded number
of connected components. This allows us to generalize the 1D analysis of (I) as
follows:

Lemma 4. a) In case d = 2 and for any fixed non-zero polynomial p ∈ R[X,Y ]
of maximum degree k, at most 1+(k−1) ⋅ (k−2)/2+2(N +1) ⋅k of the N ×N
sub-squares Qc⃗,N can contain roots of p.

b) In case d = 2 and for an arbitrary finite family of non-zero polynomials pj
of maximum degree k, at most 1 + (2k − 1) ⋅ (2k − 2)/2 + 4(N + 1) ⋅ k of the
N ×N sub-squares Qc⃗,N can contain simultaneous roots of all the pj.

c) For d ≥ 3 and any fixed non-zero polynomial p ∈ R[X1, . . . ,Xd] of maximum
degree k, at most kd + kd−1 ⋅ d ⋅ (N + 1) of the Nd sub-(hyper)cubes Qc⃗,N can
contain roots of p.

d) For d ≥ 3 and an arbitrary finite family of non-zero polynomials of maximum
degree k, at most k ⋅ (2k − 1)d + k ⋅ (2k − 1)d−2 ⋅ d ⋅ (N + 1) of the Nd sub-
(hyper)cubes Qc⃗,N can contain simultaneous roots of all of them.

e) It holds kd +kd−1 ⋅d ⋅ (N + 1) ≤ Nd ⋅ 2−n for all N ≥ 3k ⋅ 2n/(d−1) and k ≥ d ≥ 3.
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Note that the number m of polynomials in a conjunction ⋂mj=1 pj(x⃗) = 0 barely
affects the above bounds, since in the real setting it is equivalent to the single
equation of double degree ∑mj=1 p2j(x⃗) = 0.

In order to guarantee absolute error bound 2−n, all our algorithms described
in the following subsections will in case d = 2, rather than apply the concise but
asymptotic Lemma 4e), build on Lemma 4a) and use binary search to find the
least N ∈ N satisfying N2 ≥ 2n ⋅ (1 + (k − 1) ⋅ (k − 2)/2 + 2(N + 1) ⋅ k).

Proof. a) By Fact 5c) below, the roots of p can form at most c ≤ 1+(k−1) ⋅(k−
2)/2 connected components in R2. Of course such a component may extend
through more than one of the sub-squares Qc⃗,N ; however in order to do so,
it must cross one of the N + 1 horizontal lines or one of the N + 1 vertical
lines forming the sub-division of [0; 1]2. More precisely for component C to
extend to MC ∈ N of the N2 sub-squares, it must intersect at least MC − 1
of the 2(N + 1)2 segments of the 2(N + 1) aforementioned lines; and for all
c components to extend to a total of M of the N2 sub-squares, they have to
intersect these lines in at least M−c points — distinct points, since connected
components do not meet. However p restricted to any of the 2(N + 1) lines
boils down to a univariate polynomial (either in X or in Y ) of degree at
most k, and hence can have at most k roots on each such line: requiring
M − c ≤ 2k ⋅ (N + 1).

b) Joint roots of the real pj of maximum degree k are precisely the roots of the
single polynomial ∑j p2j of maximum degree 2k.

c) Similarly to the proof of (a), the roots of p can form at most cd ≤ kd connected
components according to Fact 5d). For any such component C to extend to
MC ∈ N of the Nd sub-(hyper)cubes, it must intersect at least MC−1 of the d⋅
(N+1)d facets of the overall subdivision induced by the d⋅(N+1) hyperplanes;
and for all cd components to extend to a total of M of the Nd sub-cubes, they
have to intersect these hyperplanes in at least M − cd different components!
However p restricted to any of the d ⋅ (N + 1) hyperplanes boils down to
a (d − 1)-variate polynomial of maximum degree at most k, whose roots
can form at most cd−1 ≤ kd−1 connected components according to Fact 5d):
M − cd ≤ cd−1 ⋅ d ⋅ (N + 1).

d) Similarly.

e) Apply ineqality ∣x∣d+∣y∣d ≤ (∣x∣+∣y∣)d to xd ∶= 2n ⋅(kd+d⋅kd−1) ≤ 2kd ⋅2n⋅d/(d−1)
and yd ∶= N ⋅ d ⋅ kd−1 ⋅ 2n, taking into account d

√
2+ d−1

√
d ≤ 3 for all d ≥ 3. ⊓⊔

Fact 5 a) The set {x⃗ ∶ p(x⃗) = 0} of roots of a non-zero polynomial p has mea-
sure zero.

b) Let S1, . . . , Sd ⊆ R be arbitrary subsets of cardinality ∣Si∣ > k and p ∈ R[X1, . . .Xd]
non-zero of maximal degree ≤ k. Then there exists some x⃗ ∈ ∏d

i=1 Si with
p(x⃗) ≠ 0.

c) Let p ∈ R[X,Y ] denote a bivariate polynomial of maximum degree k. Then
the number of connected components of {(x, y) ∶ x, y ∈ R, p(x, y) = 0} is at
most 1 + (k − 1) ⋅ (k − 2)/2.
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d) If ∆ ⊆ Rd is the zero set of one polynomial of maximum degree k, then it has
at most kd connected components; if it is the conjunction of (any number
of) such sets, then it has at most k ⋅ (2k − 1)d connected components.

e) For p1, . . . , pd pairwise distinct primes, x⃗ ∶= (e
√
2, e
√
3, . . . , e

√
pd) is alge-

braically independent: q(x⃗) ≠ 0 for every non-zero d-variate polynomial q
with integer coefficients; and more generally q(A ⋅ x⃗ + b⃗) ≠ 0 for any vector

b⃗ ∈ Ad with algebraic coefficients and invertible d × d-matrix A ∈ GLd(A).

Claim b) strengthens (a) and proceeds by induction on d: For any fixed (x1, . . . xd−1) ∈
∏d−1
i=1 Si, p(x1, . . . xd−1, Xd) is a univariate polynomial of degree ≤ k. Claim c)

is Harnack’s Curve Theorem [PP16, Theorem 48.1], d) its generalization due
to Milnor and Thom [HRR90, Theorem 9]; e) is the Lindemann-Weierstrass
Theorem, applied to linear independence of prime square roots over rationals.

2.2 A Real Randomized Algorithm

In order to avoid (II) accidentally hitting a root x⃗ of some constraint polynomial
p when trying to determine its sign in the sub-cube Qc⃗,N ∋ x⃗, randomization
provides an arguably easiest solution: By Fact 5 the probability for this to occur
is zero. So picking a random x⃗ ∈ Qc⃗,N gives rise to a Las Vegas-type algorithm:
always correct, but with running time proportional to log (1/p(x⃗)); recall Re-
mark 2.

Randomization has become ubiquituous in Theoretical Computer Science —
regarding discrete problems [MU05]: In the real setting it has only (yet thor-
oughly) been considered with respect to computability; cmp.[BGH15].

Here we have designed the first truly real random number generator in Exact
Real Computation. Each call produces some r ∈ [0; 1] independently with respect
to the uniform distribution: Repeating d times, shifting by c⃗ and scaling with 1/N
then yields the sought x⃗ ∈ Qc⃗,N . Internally our real generator in turn builds on a
generic source of independent fair coin flips; equivalently: independent uniformly
distributed integers in the range from 0 to 2n − 1, for any given n ∈ N. (The
uniform distribution on [0; 1] is then easily converted to other popular continuous
ones such as, say, Gaussian on R.)

2.3 A Deterministic Algorithm

With the dimension d fixed, we can avoid the problem of derandomizing Polyno-
mial Identity Testing and still get an efficient deterministic algorithm in Exact
Real Computation for finding the sign of any given non-zero p ∈ R[X1, . . . ,Xd]
of maximal degree ≤ k in some non-root x⃗ ∈ Qc⃗,N : Based on Fact 5b), evaluate
p’s sign on the (k + 1)d points of a (k + 1) ×⋯ × (k + 1) grid in Qc⃗,N in parallel,
recall Remark 2.
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2.4 A Transcendental Algorithm

By Fact 5e), algebraically independent arguments x⃗ = (x1, . . . , xd) avoid problem
(II) and can be computed efficiently: deterministically. (Any tuple of indepen-
dent random reals of course is algebraically independent with certainty.) This
algorithm thus takes such a x⃗ and scales and shifts it by dyadic rationals to lie
in Qc⃗,N .

3 Implementation and Evaluation

Evaluating a given d-variate polynomial of maximal degree ≤ k takes O(kd)
arithmetic operations. Combined with Lemma 4e), we conclude that the num-
ber of operations performed by the randomized and by the transcendental algo-
rithm (Subsections 2.2+2.4) to achieve guaranteed output absolute error 2−n is
O(kd+1 ⋅ 2n/(d−1)); the deterministic algorithm (Subsections 2.3) incurs an addi-

tional factor O(kd).
However this analysis only counts the number of operations, that is, referring

to an algebraic or unit-cost measure — as opposed to the more realistic bit-cost
measure taking into account aspects of internal or working precision.

The latter seem hard to estimate, though, since they depend not only on
the output precision n and the polynomial degree k, but also on (the coefficient
vector of) the polynomial constraints p under consideration: which in the worst-
case may give rise to unbounded running times. For a more realistic assessment
we have thus implemented, empirically evaluated and compared the practical
performance of the above three algorithms on the following kinds of benchmark
polynomials:

The bivariate polynomials X2+Y 2−1 and (X−2)2+(X ⋅Y −1)2 representing†

the transcendental periods π and ln(2); recall Equation 2); and for d = 2 and d = 3
the multivariate scaled Wilkinson-type Polynomials I pn,d ∶= ∏d

i=1∏
k
j=1 (Xi − j

k
)

deliberately placing roots at points on a grid that the deterministic algorithm
will try to determine their signs in and Wilkinson-type Polynomials II pn,d ∶=
∏k
j=1 (∏

d
i=1Xi − j

k
) .

3.1 Computing Environment

The above three algorithms were implemented without multithreading in Ex-
act Real Computation based on the iRRAM C++ library [Mül01, MZ14] commit
487a123. Their source codes and the experiment results are available for down-
load from url https://github.com/junheecho/period and https://github.

com/junheecho/iRRAM. We have executed and timed them on a computer with
Intel® Core™ i7-6950X processor with 10 cores, 20 threads running at 3.00 GHz
and 64 GB of RAM. Less than 20 processes ran at the same time so that they do
not impede each other. The source code is compiled with g++ 5.4.0 on Ubuntu
16.04.3 LTS. We focus on CPU time; memory was never a problem.

†Of course the specific periods π and ln(2) admit other, more efficient algorithms. . .

https://github.com/junheecho/period
https://github.com/junheecho/iRRAM
https://github.com/junheecho/iRRAM
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3.2 Performance Results

Input Algorithm Regression R2 score

π
Randomized exp(1.31n − 9.51) 0.99
Deterministic exp(1.14n − 7.69) 0.88

Transcendental exp(1.34n − 9.73) 1.00

(the ratio over the randomized)
Deterministic exp(−3 ⋅ 10−5n + 0.03) 0.00

Transcendental exp(−0.07n + 0.88) -0.66

ln(2)
Randomized exp(1.38n − 11.74) 1.00
Deterministic exp(1.30n − 10.65) 1.00

Transcendental exp(1.31n − 10.75) 1.00

(the ratio over the randomized)
Deterministic exp(−0.09n + 1.09) 0.62

Transcendental exp(0.07n − 0.57) 0.38

Wilkinson-type Polynomials I

Randomized
exp(1.38n − 12.32) ⋅ k3.33 0.89

exp(1.01k + 1.37n − 11.95) 0.49

Deterministic
exp(1.37n − 12.34) ⋅ k4.24 0.98

exp(1.30k + 1.37n − 12.10) 0.51

Transcendental
exp(1.22n − 10.27) ⋅ k2.94 0.95

exp(0.90k + 1.21n − 10.01) 0.86

(the ratio over the randomized)
Deterministic

exp(0.05n − 0.54) ⋅ k0.94 0.63
exp(0.31k + 0.05n − 0.60) 0.73

Transcendental
exp(−0.01n + 0.41) ⋅ k−0.17 -0.05
exp(−0.05k − 0.01n + 0.42) -0.06

Wilkinson-type Polynomials II

Randomized
exp(1.25n − 10.39) ⋅ k2.80 0.98
exp(0.73k + 1.24n − 9.82) 0.76

Deterministic
exp(1.27n − 10.47) ⋅ k3.55 0.99

exp(0.95k + 1.28n − 10.01) 0.88

Transcendental
exp(1.26n − 10.19) ⋅ k2.64 0.99
exp(0.66k + 1.24n − 9.36) 0.92

(the ratio over the randomized)
Deterministic

exp(0.08n − 1.03) ⋅ k1.03 0.73
exp(0.28k + 0.08n − 0.96) 0.85

Transcendental
exp(0.02n + 0.12) ⋅ k−0.15 0.11

exp(−0.04k + 0.02n + 0.07) 0.12

Table 1: Parameter Regression of CPU time

We have measured, for each of the three above algorithms and each of the
above benchmark polynomials as input, the CPU time in dependence on n;
for the Wilkinson-type Polynomials also on k. We have then fitted the results
to the model/ansatz exp(n ⋅ β − α) — for the Wilkinson-type Polynomials to
exp(n ⋅ β − α) ⋅ kγ — and plotted both. We have also fitted the result for the
Wilkinson-type Polynomials to exp(k ⋅ γ + n ⋅ β − α) but the R2 scores show
the aforementioned model is more suitable. We have also plotted and fitted the
ratios of the algorithms’ respective performances to the aforementioned models:
See the following figures.
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3.3 Interpretation
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(a) The running time and the fit, k = 6 (left) and n = 11 (right)

5 6 7 8 9 10 11
0
1
2
3
4
5
6
7
8
9

10

n

T
h
e

ra
ti

o
o
f

ti
m

e

1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9

10

k

(b) The ratio over the randomized, k = 6 (left) and n = 11 (right)

Fig. 1: CPU time (sec.) of computing periods via Wilkinson-type Polynomials I

Our measurements confirm the predicted running times polynomial in k and
exponential in n. They furthermore exhibit an exponential advantage of the
randomized and the transcendental algorithm over the deterministic one. The
performances of the randomized and the transcendental algorithms are identical.
The difference of performance is little with respect to n, but significant with re-
spect to k; thus, the performances of all algorithms are identical when computing
π and ln(2) because n is the only parameter.

Following the Balls-into-Bins paradigm [BCSV06], we have tried a synthesis
of the randomized and the deterministic algorithm (Subsections 2.2+2.3) that
evaluates the polynomial’s sign at two random points in parallel — however with
no benefit in performance.
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4 Conclusion and Perspectives

We have present three algorithms rigorously computing periods: a deterministic
one, that evaluates the constraint polynomials at sufficiently many dyadic points
simultaneously such as to guarantee at least one missing its roots; a random-
ized (and arguably first rigorous real) one, that misses roots almost surely; and
one evaluating at an appropriate algebraically independent argument that by
definition cannot constitute a root.

Although all three take time exponential in the output precision n, they ex-
hibit significant differences in practical performance. Perhaps surprisingly, eval-
uating at two random points in parallel (and thus automatically choosing the
‘better’ one) turned out to be slower, not faster, than a single one.

For now we have focused on the case of two (and three) variables. Future
work will extend in that, and the following directions:

a) Picking up on the first paragraph of Section 3, we will try to identify reason-
able parameters of the polynomials p ∈ Z[X1, . . . ,Xd] under consideration,
in addition to their maximal degree bound k, to devise a refined rigorous
parameterized bit-cost analysis.

b) The question remains open as of whether every fixed period can be computed
(i.e. approximated up to absolute error 2−n) in time polynomial in n.

c) In the spirit of Experimental Mathematics, we plan to algorithmically search
for new (candidate, linear or algebraic) relations among periods.
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[Koi99] Pascal Koiran. The real dimension problem is NPR-complete. Journal of
Complexity, 15(2):227–238, 1999.

[Kut87] Miroslaw Kutylowski. Small Grzegorczyk classes. Journal of the London
Mathematical Society, 36(2):193–210, 1987.

[KZ01] Maxim Kontsevich and Don Zagier. Periods. In Björn Engquist and Wilfried
Schmid, editors, Mathematics unlimited — 2001 and beyond, pages 771–808.
Springer, 2001.

[Mee06] Klaus Meer. Optimization and approximation problems related to polyno-
mial system solving. In Proc. 2nd Conference on Computability in Europe
(CiE’06), pages 360–367, 2006.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing - ran-
domized algorithms and probabilistic analysis. Cambridge University Press,
2005.

[Mül01] Norbert Th. Müller. The iRRAM: Exact arithmetic in C++. In Jens Blanck,
Vasco Brattka, and Peter Hertling, editors, Computability and Complexity in
Analysis, volume 2064 of Lecture Notes in Computer Science, pages 222–252,
Berlin, 2001. Springer. 4th International Workshop, CCA 2000, Swansea,
UK, September 2000.

[MZ14] Norbert Th. Müller and Martin Ziegler. From calculus to algorithms with-
out errors. In Hoon Hong and Chee Yap, editors, Proc. 4th International
Congress on Mathematical Software (ICMS), volume 8592 of Lecture Notes
in Computer Science, pages 718–724. Springer, 2014.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[PP16] Patric Popescu-Pampu. What is the Genus?, volume 2162 of Lecture Notes
in Mathematics. Springer, 2016.

[Rit63] Robert W. Ritchie. Classes of predictably computable functions. Trans.
Amer. Math. Soc., 106(1):139–173, 1963.

[Sko08] Dimiter Skordev. On the subrecursive computability of several famous con-
stants. Journal of Universal Computer Science, 14(6):861–875, 2008.

[SWG12] Dimiter Skordev, Andreas Weiermann, and Ivan Georgiev. M2-computable
real numbers. J. Logic Comput., 22(4):899–925, 2012.

[Tur37] Alan M. Turing. On computable numbers, with an application to the
“Entscheidungsproblem”. Proceedings of the London Mathematical Society,
42(2):230–265, 1937.

[TZ10] Katrin Tent and Martin Ziegler. Computable functions of reals. Münster
J. Math., 3:43–65, 2010.

[VS17] Juan Viu-Sos. A semi-canonical reduction for periods of kontsevich-zagier.
arXiv, 1509.01097, 2017.

[Wei00] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
[Yos08] Masahiko Yoshinaka. Periods and elementary real numbers. arXiv,

0805.0349, 2008.


	Computing Periods…

