
Reducing MAC operation in convolutional neural
network with sign prediction

Jiho Chang
Intelligent Robot System Research Group

Electronics and Telecommunications Research Institute
Daejeon, Korea

changjh@etri.re.kr

Yoonsung Choi, Taegyoung Lee, Junhee Cho
School of Computing

Korea Advanced Institute of Science and Technology
Daejeon, Korea

{giantsol2, taegyoung, junheecho}@kaist.ac.kr

Abstract—Due to recent researches on artificial neural net-
work algorithms and machine learning, the accuracy of image
recognition and natural language processing has increased to the
level of human beings in specific fields. Especially, researches to
improve the accuracy of algorithms are being actively conducted,
and researches on hardware accelerators that implement such
algorithms quickly and efficiently are actively under way. In
order to utilize artificial intelligence reasoning ability as well
as computing speed in mobile or embedded environment, it is
necessary to reduce the power consumption and memory usage
of artificial intelligence hardware. In this paper, we propose a
algorithm to reduce the computational complexity in designing
the CNN accelerator. We tried to reduce the MAC computation
by encoding the inputs and predicting the sign of the MAC oper-
ation. We confirmed the performance improvement by evaluating
the sign predictor through the simulation results.

Index Terms—CNN, Hardware accelerator, Sign prediction,
activation function

I. INTRODUCTION

Recently, deep neural networks (DNN) have been widely
adopted in many computer vision areas as image processing,
medical imaging, activity recognition, and robotics. [7] This
is because performance of parallel process calculators has
been improved to handle a large number of computations and
weights for DNN. [4], [8] General-purpose graphics process-
ing unit (GPGPU) has been prevalently used to accelerate
neural network computations in both academia and industry.
Because GPGPU has been introduced for intensive parallel
computation in computer graphics, it is inherently apt for
neural network computations, which are easily parallelized. In
general, GPGPU is good for parallel computations; however,
it is not tailored for neural network computations. The large
energy consumption and the large size of GPGPU are pivotal
issues. Especially, in mobile platforms such as drone, robot,
and mobile phone, it is hard to embed GPGPUs. Hence, many
research results searched for an accelerator which outperforms
GPGPU in neural network computations in terms of perfor-
mance per energy consumption. There are already several re-
search results to deal with these issues by different approaches:
reducing the size of data storage; the bus usage to transmit

This work was supported by the ICT R&D program of MSIP/IITP. [2017-
0-00306, Development of Multimodal Sensor-based Intelligent Systems for
Outdoor Surveillance Robots]

in and out of processing units; the network connections by
pruning; and the size of data i.e. weights to make the size of
processing unit small.

Hardware-based accelerations of DNNs usually take two
approaches. The first approach is to reduce the number of
multiply-accumulate (MAC) operations because accelerators
are designed to be small and thus the number of processing
elements (PE) is small unlike GPGPU with thousands of cores.
The second approach is to make memory access more efficient.
Caching is difficult because a cache entry is not repeatedly
used as much as in general applications. Meanwhile, PE
scheduling and careful configurations of board aims to reduce
the workload on bottlenecks in the memory bus.

We focus on reducing the number of MAC operations in
convolution layer (CONV), which is involved in convolu-
tional neural networks (CNN), generative adversarial network
(GAN), and autoencoder. CNN is a feed-forward DNN which
has long been used in image processing, video analysis, natural
language processing, and even in Go. GAN is a system of two
neural networks competing each other in a zero-sum game
framework. It has been used in image recognition, pattern
recognition from a video, reproducing photorealistic image
and video. Autoencoder is a neural network to learn generative
models of data and an encoding for a set of data. The goal
of training of autoencoder is to find an encoding where data
is compressed and then uncompressed to another data which
closely matches to the original data. Thus, it has been widely
used in dimensionality reduction.

In this background, we will survey the state-of-art DNN
accelerators and try improving them by reducing the number
of MAC operations as described in Section III.

A. Trends in CNN

Convolutional Neural Network (CNN) is one of widely used
neural network and cannot be neglected. It mainly consists
of convolution layer (CONV) and fully-connected layer (FC).
They contrast how they compute and how they access memory.
The number of parameters and computations are shown in
Table I. Fully-connected layer holds most of parameters, i.e.,
weights. Although CNN usually consists of a few fully-
connected layers and they hold a few of computations, they

Fig. 1. Concept diagram of fully connected layer and convolution layer

are the bottleneck to degrade performance because they access
memory intensively. On the other hand, convolution layers
which hold most of computations tend to have increasing
number of parameters.

Figure 1 conceptually illustrates the computation of a fully
connected network and a convolution network. Since FC
process the calculation for all connections to the input, the
weight and the number of operations increase in proportion
to the input. In case of CNN, the input of convolution
layer are 2D arrays and the output are again 2D arrays.
The computations are 2D convolutions sliding over the
input arrays. Kernel or filter is a 2D array of weights. It is
repeatedly used as it convolve over the input. Therefore, CNN
has relatively less weights than FCN, but it requires a lot of
iterative operations. Neural network accelerators reduce the
number of computations or the number of memory accesses
for that reason. For instance, accelerators targeting GooLeNet
and Resnet-152, which are increasingly used, would reduce
the number of computations in convolution layers. [9] [6]

II. RELATED WORKS

In this section, we survey recent research results on energy
efficient accelerators for neural networks.

a) EYERISS: EYERISS proposed by Stanford Univ. [2]
is a neural network accelerator consists of a 2D array of PEs
with a local register file, and a global SRAM buffer shared
by all PEs. Figure 2 shows the top-level architecture and
memory hierarchy of the EYERISS. EYERISS is designed
to enable the scheduler to select the data to be executed at
each PE and to pass the data through the connected bus
between the PEs in order to use the accelerator efficiently.
For such computation, each PE can either access local
memory or communicate with neighbor PEs or the SRAM
buffer. EYERISS has two approaches to improve the energy
efficiency: reducing data transmission and exploiting data
statistics. So, it has run-length encoding codec, and zero
skipping module with ReLU.

Fig. 2. Achitecture of EYERISS

b) Tetris: Tetris is based on accelerators with the same
structure as EYERISS to reduce energy consumption by
making scheduling more efficient. Scheduling is particularly
important for using small buffers which could access to slow
DRAM. Tetris [3] schedules NN layer of arbitrary sized onto
the given size physical PE array to maximize data reuse.
Furthermore, it supports a tiled architecture with multiple
nodes that can partition and process computations in parallel.
Each node is an Eyeriss-style engine. While it is used by
users, user can specify NN batch size and word size, PE
array dimensions, number of tile nodes, register file and global
buffer capacity, and the energy cost of all components. Note
that the energy cost of array bus should be the average energy
of transferring the data from the buffer to one PE, not local
neighbor transfer.

A. Reducing the number of operations in convolution layers

In convolutional layers in most of frequently used CNNs,
each convolution operation is commonly followed by an
activation function called a Rectifying Linear Unit (ReLU).
ReLU function returns zero for negative inputs and returns
the input value back for the positive ones. Vahideh et al.
observe that a large amount of ReLU outputs are zero, due to
a large number of negative convolution outputs. [1] Also, they
show this trend among several popular CNNs where ReLU
sets 42%-68% of outputs to zero. Therefore, by utilizing the
characteristics of the ReLU, it is possible to spare a large
number of MAC operations, to reduce memory access, and to
keep small space of the intermediate result storage.

In the EYERISS NN accelerator, they use the output
activations of the feature maps are sparse after the ReLU.
The sparsity can be optimized for energy and area savings
using data compression, particularly for slow DRAM access.
In addition to compression, the accelerator skips reading the
weights and the inputs to perform the MAC for zero-valued
activations to reduce energy cost by 45%. However, EYERISS
NN accelerator reduces the amount of the following convolu-
tion calculations, but must calculate them at the beginning of
feature input and weight input.

On the other hand, the SnaPEA proposed by Vahideh et al.
rearranges the ordering of inputs and weights according to the
sign of the weight, and predicts the sign of output value as
the accumulation is processing. To reduce the computations

TABLE I
COMPARISON OF CONVOLUTION LAYER (CONV) AND FULLY-CONNECTED LAYER (FC) IN TERMS OF COMPUTATION

Model Parameters (million) CONV (%) FC (%) Operations (million) CONV (%) FC (%)
AlexNet 61.0 3.8 96.2 725 91.9 8.1
VGG-16 138.0 10.6 89.4 15,484 99.2 0.8

GoogLeNet 6.9 85.1 14.9 1,566 99.9 0.1
ResNet-50 25.6 - - 3,900 - -

further, SnaPEA speculates on the sign of the outputs before
starting with the negative weights. The proposed method
shows that if the partial output of MAC operations is less
than a threshold, we predict the final convolution output will
be negative. Vahideh et al. insist their accelerator has 28%
speedup and 16% energy reduction in various modern CNNs
than a EYERISS CNN accelerator without affecting their
classification accuracy.

B. Network quantization and weight sharing

Recent research results compress neural networks by
network quantization and weight sharing. They reduce the
number of effective weights by sharing one of similar
weights with the others. In linear approach, floating point
numbers are transformed into fixed point numbers. This
approach is employed in commercial accelerators such as
tensor processing unit (TPU) introduced by Google and
NVIDIA PASCAL GPU. However, this approach results
a degraded quality as the bit size is reduced because of
wide range of weights. [5] In non-linear approach, which
consider non-uniform distribution of weights, non-linear
quantization results less loss of quality. However, a hardware
implementation of non-linear quantization is difficult.

III. PROPOSED ALGORITHM

Between two approaches introduces in Section II, our ap-
proach is to reduce the number of operations, MAC operations.
We encode the weights and the values from the input layer
in fixed or floating point number in reduced size. Then, we
evaluate the MAC operation with the numbers in reduced size
and predict the sign of the MAC operation with the original
numbers. The MAC operations with numbers in reduced size
runs faster than the MAC operations with the original numbers.
If the prediction is correct, we safely skip the MAC operations
resulting the output 0 without loss of quality. Figure ?? and 3
illustrates the overview of our approach and the sign prediction
unit signals a termination control signal to terminate the MAC
operation with the original numbers when a negative number
is predicted.

In Subsection III-A, we introduce the encoding and prove
the correct of prediction. In Subsection III-B, we introduce
an encoding more suitable to implement in hardware.

A. Encoding weight and input

In this section, we introduce a hardware-friendly encoding
which does not produce a loss.

Fig. 3. Flow chart of termination

Let ~p = (p1, p2, · · · , pn) and ~q = (q1, q2, · · · , qn). Then,
our goal is to predict whether ~p · ~q =

∑n
i piqi is positive or

negative. We round all components pis and qis from the fifth
digit from the first digit with 1. Let ~r = (r1, r2, · · · , rn) and
~s = (s1, s2, · · · , sn) be the rounded numbers. For example,
if ~p = 0.001101001 and ~q = 0.0100110, ~r = 0.001101 and
~s = 0.01010. Then, for each i, |pi−ri| ≤ 2−xi and |qi−si| ≤
2−yi for some xi and yi.

Lemma III.1. |piqi − risi| ≤ 2−xi |si| + 2−yi |ri| + 2−xi−yi

for all i.

Proof. By the conditions,

ri − 2−xi ≤ pi ≤ ri + 2−xi (1)
si − 2−yi ≤ qi ≤ si + 2−yi (2)

If pi and qi are positive,

(ri − 2−xi)(si − 2−yi) ≤ piqi ≤ (ri + 2−xi)(si + 2−yi) (3)

If pi and qi are negative,

(ri − 2−xi)(si − 2−yi) ≥ piqi ≥ (ri + 2−xi)(si + 2−yi) (4)

Fig. 4. Prediction interval

Now, the remaining case is when one of pi and qi is positive
and the other is negative. Let pi is positive and qi is negative.
Then,

(ri + 2−xi)(si − 2−yi) ≤ piqi ≤ (ri − 2−xi)(si + 2−yi) (5)

On the right-hand side inequality,

piqi ≤ risi − 2−xisi + 2−yiri − 2−xi−yi (6)
≤ risi + 2−xisi + 2−yiri + 2−xi−yi (7)

Similarly, on the left-hand side inequality,

piqi ≥ risi − 2−xisi + 2−yiri − 2−xi−yi (8)
≥ risi − 2−xisi − 2−yiri − 2−xi−yi (9)

Therefore, it holds in all cases.

With Lemma (III.1),

|~p ·~q−~r ·~s| ≤
∑

2−xi |si|+
∑

2−yi |ri|+
∑

2−xi−yi (10)

In other words,

~p·~q ≤ ~r ·~s+
(∑

2−xi |si|+
∑

2−yi |ri|+
∑

2−xi−yi
)

(11)

Therefore, ~p · ~q ≤ 0 when the following holds

~r · ~s ≤ −
(∑

2−xi |si|+
∑

2−yi |ri|+
∑

2−xi−yi
)

(12)

We compute the both sides of Equation (12) and compare
the two values. If Equation (12) holds, we conclude the result
of the MAC operation ~p · ~q is negative and skip the MAC
operation.

This prediction is correct: no false-positive. If the original
weighted sum is positive, the weighted sum in our encoding is
positive. If the original weighted sum is negative, the weighted
sum in our encoding might be positive or negative. Therefore,
our predictor reports negative only when the original weighted
sum is negative.

More precisely, our predictor reports negative when the
original weighted sum is less than the right-hand side of
Equation (12). Let −E be the right-hand side of Equation
(12). The prediction interval is illustrated in Figure 4. When
we use less bits in the encoding, the running time of prediction
would decrease, but E becomes larger. When we use more bits
in the encoding, we can make E smaller, but the running time
of prediction would increase.

B. Hardware-oriented encoding

The prediction introduced in Subsection III-A involves
finding the position of first bit with value 1. It is occasionally
implemented by series of shift operations, which requires
multiple clock cycles. Because its output timing depends on
the value of input, a complicated logic should be implemented
on hardware. When we use fixed point encoding instead
of floating point encoding, the output timing of prediction
is fixed; thus, it is easy to implement on hardware. For
example, if ~p = 0.001101001 and ~q = 0.0100110, we use
~r = 0.0011 and ~s = 0.0101 instead of ~r = 0.001101 and
~s = 0.01010. Figure 5 is a block diagram for our hardware
oriented archtecture.

IV. PLANNED METHODOLOGY

A. Evaluation metric

The MAC operation computes the product of two numbers
and adds that product to an accumulator. Generally, CNN
processing consists of 3 layers that are convolution layer,
pooling layer and fully connected layer. Convolution layer
which consume the most time of execution time is made
up basic MAC operation. Therefore, high speed accelerators
choose specific structure that accelerate MAC operation in
parallel using a large amount of MAC operation. In order
to do MAC operation with high speed, input feature map
information and filter weight information of current layer
are read on each memory. And gathering information are
processed by PE(Processing element) based on MAC operation
and then output feature map information for next layer are
restored on memory. Therefore, we measure the number of
MAC operations performed by one method for evaluation
between algorithms. Since the scheduling tools count the
number of operations for each layer, various workloads and
algorithms can be evaluated. Energy efficiency is measured
by the throughput per watt and it is determined by energy
consumption. We are expecting less energy consumption than
others.

B. Workloads

We use several famous NN workloads to evaluate our
algorithm. AlexNet, invented by Alex Krizhevsky, is famous
neural network won the 2012 ImageNet LSVRC-2012
competition by a large margin. alexnet is designed to fit
image classification, but it is known to express feature
information about images well, and it is also used nowadays
because it is not heavy network compared to modern NN.

V. SIMULATION AND RESULTS

In this section, we will perform simulation by inputting
randomly generated values and real images to alexnet for eval-
uating negative prediction accuracy when using the proposed
algorithm.

Fig. 5. Overview of our hardware oriented architecture

A. Random generation results

In order to verify the effectiveness of various networks
and fully connected layers other than specific CNNs, weight
and input are generated as random variables with specific
distribution and the results of the sign prediction of the MAC
operation are confirmed. Weight is generated to follow the
gaussian distribution when most CNNs are well trained, and
input is generated to follow the uniform distribution. Both
data assume a 16-bit fixed point, which is the size of data
that conventional CNN accelerators typically used. Assuming
1000 sums of vector products multiplied by size of 300 and
300, we performed 10 runs for each encoded bit. Figure 6
shows the average of the predicted ratio for the negative result
of the original multiplication operation depending on size of
encoding bit. In the case of 12bit, 100% of the negative
number was predicted. As the bit decreased, the prediction
rate decreased, and the accuracy of prediction was about 80%
(95% or more in case of HW) in 4bit.

B. AlexNet results

In the case of real networks, since the weight value is
learned, it has a biased shape instead of a perfect gaussian
distribution. Therefore, we conducted experiments using
AlexNet learned for image classification to determine how
negative prediction actually occurs in CNN. For the two
image inputs, 4-bit encoding of the HW oriented method is
used, and the following Table II shows the results in the 1st
layer. Among the results of the total convolution, 151267
(laska) and 152960 (poodle) negative numbers occur, and it
can be confirmed that most of the negative numbers can be
predicted as 88% (laska) and 77% (poodle). It accounts for
about 45% of the total MAC operation in the convolution

Fig. 6. Prediction results for random values

layer, and it can be seen that it can reduce a considerable
amount of computation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to improve performance
by interrupting through the sign prediction of MAC operation.
For this algorithm, we showed mathematically satisfactory
results for a new encoding method with a low bit size, and
proposed a method suitable for hardware implementation. The
original plan was to simulate the MAC operation in the Tetris
simulator to measure the energy and time that would actually
be reduced, but the simulator had difficulty changing because
it is an implementation of a static analysis calculating from the
network structure without actually running the neural network

TABLE II
PREDICTION RESULTS FOR ALEXNET

Input Real ≤ 0 Pred ≤ 0 Pred > 0
Laska 151,267 133,209 (88.06%) 18,058 (11.94%)
Poodle 152,960 118,899 (77.73%) 34,061 (22.27%)

computations rather than a dynamic analysis which runs time-
based operations. In the future, we will evaluate the overall
energy consumption and the degree of saving of the MAC
performance according to the timing of the termination signal
result by completing the simulation including to the timing.

REFERENCES

[1] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K.
Gupta, and Hadi Esmaeilzadeh. Snapea: Predictive early activation for
reducing computation in deep convolutional neural networks. ISCA 2018,
Jun 2018.

[2] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, Jan 2017.

[3] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and efficient neural network acceleration with
3d memory. SIGARCH Comput. Archit. News, 45(1):751–764, April 2017.

[4] Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural network with pruning, trained quantization and
huffman coding. CoRR, abs/1510.00149, 2015.

[5] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural networks. In Proceedings
of the 28th International Conference on Neural Information Processing
Systems, pages 1135–1143, Cambridge, MA, USA, 2015. MIT Press.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, June 2016.

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521:436 EP –, 05 2015.

[8] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh. From high-level deep neural models
to fpgas. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, Oct 2016.

[9] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, June 2015.

