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Abstract
The prevalent uses of JavaScript in web programming have re-
vealed security vulnerability issues of JavaScript applications,
which emphasizes the need for JavaScript analyzers to detect such
issues. Recently, researchers have proposed several analyzers of
JavaScript programs and some web service companies have devel-
oped various JavaScript engines. However, unfortunately, most of
the tools are not documented well, thus it is very hard to understand
and modify them. Or, such tools are often not open to the public.

In this paper, we present formal specification and implemen-
tation of SAFE, a scalable analysis framework for ECMAScript,
developed for the JavaScript research community. This is the very
first attempt to provide both formal specification and its open-
source implementation for JavaScript, compared to the existing ap-
proaches focused on only one of them. To make it more amenable
for other researchers to use our framework, we formally define
three kinds of intermediate representations for JavaScript used in
the framework, and we provide formal specifications of translations
between them. To be adaptable for adventurous future research in-
cluding modifications in the original JavaScript syntax, we actively
use open-source tools to automatically generate parsers and some
intermediate representations. To support a variety of program anal-
yses in various compilation phases, we design the framework to be
as flexible, scalable, and pluggable as possible. Finally, our frame-
work is publicly available, and some collaborative research using
the framework are in progress.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Formalization

Keywords JavaScript, ECMAScript 5.0, formal semantics, formal
specification, compiler, interpreter

1. Introduction
JavaScript is now the language of choice for client-side web pro-
gramming, which enables dynamic interactions between users and
web pages. By embedding JavaScript code that use event handlers
such as onMouseOver and onClick, static HTML web pages be-
come “Dynamic HTML” [12] web pages. JavaScript is originally
developed in Netscape, released in the Netscape Navigator 2.0
browser under the name LiveScript in September 1995, and re-
named as JavaScript in December 1995. After Microsoft releases
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1 function Wheel4() { this.wheel = 4 }
2 function Car() { this.maxspeed = 200 }
3 Car.prototype = new Wheel4;
4 var modernCar = new Car;
5
6 var beforeModern =
7 modernCar instanceof Car; // true
8
9 function Wheel6() { this.wheel = 6 }

10 Car.prototype = new Wheel6;
11 var afterModern =
12 modernCar instanceof Car; // false
13 var truck = new Car;
14 var aftertruck =
15 truck instanceof Car; // true

Figure 1. Unintuitive behavior of JavaScript prototypes

its own implementation of the language, JScript, in the Internet
Explorer 3.0 browser in 1996, Ecma International develops the
standardized version of the language named ECMAScript [8, 9].
JavaScript was first envisioned as a simple scripting language, but
with the advent of Dynamic HTML, Web 2.0 [28], and most re-
cently HTML5 [1], JavaScript is now being used on a much larger
scale than intended. All the top 100 most popular web sites accord-
ing to the Alexa list [2] use JavaScript and its use outside web pages
is rapidly growing.

As Brendan Eich, the inventor of JavaScript, says [7]:

“Dynamic languages are popular in large part because pro-
grammers can keep types latent in the code, with type
checking done imperfectly (yet often more quickly and ex-
pressively) in the programmers’ heads and unit tests, and
therefore programmers can do more with less code writ-
ing in a dynamic language than they could using a static
language.”

By sacrificing strong static checking, JavaScript enjoys aggres-
sively dynamic features such as run-time code generation using
eval and dynamic scoping using with. In addition, JavaScript
provides quite different semantics from conventional programming
languages like C [22] and Java [4]. For example, JavaScript al-
lows programmers to use variables and functions before defining
them, and to assign values to new properties of an object even be-
fore declaring them in the object. Also, JavaScript allows users to
access the global object of a web page via interactions with the
DOM (Document Object Model) without requiring any permis-
sions. JavaScript provides “prototype-based” inheritance instead of
classes.

Consider the code example in Figure 1. Unlike conventional
programming languages, the inheritance hierarchy may be changed
after creation of objects. When modernCar is constructed at line 4,
it is an instance of the Car object. However, because the prototype



of Car is changed from Wheel4 to Wheel6 at line 10, modernCar
is not an instance of Car any more at line 12. In JavaScript, when
some properties of a constructor change, the objects constructed
before and after the change may be considered different instances
even though they are constructed from the same constructor.

Due to such quirky semantics, understanding and analyzing
JavaScript applications are well known to be difficult, and they are
often targets of security attacks [19]. Because of the crude con-
trol by the same-origin policy of HTML, once a web page trusts
third-party code it permits subsequent contents from the same ori-
gin, which often allows malicious scripts to sneak in. Such code
injections can easily allow attackers to get high access permissions
to secure contents including session cookies and unprotected per-
sonal information. This security problem known as XSS (cross-site
scripting) shows up often in web pages and web applications. To re-
solve the problem, web service companies have developed several
defense mechanisms such as cookie-based security policies and fil-
tering out string inputs that may contain malicious scripts, but their
functionalities are very limited. More robust approach might be us-
ing a presumably safe subset of JavaScript: Yahoo! ADsafe [6],
Facebook FBJS [10], and Google Caja [13]. While they are in-
tended to be safe subsets of JavaScript, none of them has been
shown safe. Rather, researchers have reported security vulnerabili-
ties with ADsafe and FBJS [24, 25, 31].

Clearly, better analyses of JavaScript applications for devel-
oping more reliable programs become indispensable. As more
fundamental solutions to the security vulnerability problems of
JavaScript, researchers recently have proposed formal specifica-
tions [11, 17, 23], type systems [3, 18, 33], static analyses [16,
20], and combinations of static and dynamic analyses [5, 24]
for JavaScript. Web-service companies also have fertilized the
JavaScript research community by open sourcing their JavaScript
engines such as Rhino [26] and SpiderMonkey [27] from Mozilla,
and V8 [14] from Google. While each of them contributes various
aspects to solve the problem of JavaScript vulnerability issues, they
are yet unsatisfactory in several reasons. First, most of them do not
have a well-defined specification or a document to describe them;
it is hard for other researchers to understand them and utilize them
for their own further research. Secondly, they are not designed and
developed for general research but often tightly coupled with their
underlying browsers; it is quite challenging to integrate new ideas
and new analyzers to existing systems. Thirdly, it is almost im-
possible to change or extend the existing implementations: most
of them do not have any implementations yet, they do not make
the implementations available to the public, or the design of the
hand-written parsers and Abstract Syntax Tree (AST) nodes are
not well-suited to extension and experimentation for researchers
since they are with full of undocumented optimizations. Finally,
even though the 5th edition of ECMA-262 [9] is released in 2009,
most of them deal with the 3rd edition of ECMA-262 [8] released
in 1999.

In this paper, we present formal specification and implementa-
tion of SAFE (Scalable Analysis Framework for ECMAScript) [30],
developed for the JavaScript research community. Based on our
own struggles and experiences, the first principles of our framework
are formal specification, flexible, scalable, and pluggable frame-
work design, open-source implementation, and aggressive use of
various tools for automatic generation. Unlike most of the existing
approaches, our framework deals with the 5th edition of ECMA-
262 (hereafter called the ECMAScript specification). To help other
researchers to understand our framework more easily, we specify
every intermediate representation used in the framework formally,
and we try to narrow the gaps between the specification and the cor-
responding implementation. To allow adventurous research ideas
to be realized on top of our framework, we use automatically gen-

erated parsers and AST nodes from high-level, brief descriptions
thanks to various third-party open-source tools. To support a va-
riety of analyses on various compilation phases, we provide three
levels of intermediate representations and well-defined translation
mechanisms between them. Using SAFE, some collaborative re-
search on JavaScript such as clone detection and code structure
analysis are in progress with both academia and industry.

In short, our contributions are as follows:

• SAFE is the very first attempt to support both formal specifica-
tion and its implementation for JavaScript.

• SAFE is based on the 5th edition of the ECMAScript specifica-
tion.

• SAFE formally defines every intermediate representation used
in the framework and provides formal specifications of the
translations between them.

• SAFE describes the formal semantics of its Intermediate Rep-
resentation (IR) with the descriptions of the corresponding lan-
guage constructs in the ECMAScript specification.

• SAFE consists of formally defined components that are ade-
quate for pluggable analysis extensions.

• SAFE makes its implementation available to the public for the
research community:

http://plrg.kaist.ac.kr/research/safe

2. SAFE

Before describing the formal specification and the implementation
of SAFE in detail in Sections 3 and 4, we describe the motivation
of our work and a big picture of the framework.

2.1 Motivation
We encountered several obstacles while using existing tools in
our previous research. Recently, we have worked on JavaScript-
related topics: 1) adding modules to the existing JavaScript lan-
guage via desugaring [21] and 2) removing the with statement
in JavaScript applications [29]. For 1), we designed a module
system for JavaScript and devised a desugaring mechanism from
JavaScript extended with the module system to a slightly modi-
fied λJS [17]. Following the tradition of λJS , we extended the
implementation of λJS and its desugaring mechanism to handle
our module system. We have been very grateful for the authors
to open source their implementation but the paper does not de-
scribe the desugaring process in detail, the implementation in mul-
tiple languages including Haskell and Scheme is not well docu-
mented, and the big semantic gap between JavaScript and λJS is
not helpful to reason about the original JavaScript applications. For
2), we tried three open-source JavaScript parsers and engines: Plug-
inForJS1 in C#, Caja2 in Java, and Rhino in Java. PluginForJS does
not cover the entire JavaScript language, Caja supports a dialect
of JavaScript, and Rhino uses a hand-written parser with undocu-
mented optimizations and a set of simplified AST nodes. Finally,
all of them deal with the 3rd edition instead of the 5th edition of
the ECMAScript specification.

Based on our own struggles, we design and develop SAFE, a
scalable ECMAScript analysis framework for the JavaScript re-
search community. We present formal specifications of interme-
diate representations and translations between them for other re-
searchers to understand our framework as easily and quickly as
possible. Many parts of the formal specifications of SAFE describe

1 https://jslexerparser.codeplex.com
2 http://code.google.com/p/google-caja

http://plrg.kaist.ac.kr/research/safe
https://jslexerparser.codeplex.com
http://code.google.com/p/google-caja


Figure 2. SAFE flow graph

the corresponding sections in the ECMAScript specification to help
the readers to consult with the specification. To allow aggressive
modifications even on the syntax of JavaScript, we actively use au-
tomated generation tools such as Rats! [15] for parsers and AST-
Gen [32] for intermediate representations. We make our framework
open to the public so that any JavaScript research groups can save
their work on developing a series of routine compilation phases.
At the same time, the framework is modularly designed and devel-
oped so that new research ideas can be easily realized and tested by
developing a pluggable module on top of our framework.

2.2 Big Picture
Figure 2 describes the overall structure of SAFE. Dashed boxes de-
note data and solid boxes denote modules that transform data. The
framework takes a JavaScript program; Parser parses the pro-
gram and translates it into an AST; a series of compilation phases–
Hoister, Disambiguator, and WithRewriter–transforms an
AST to a simplified version in AST to make it easier to analyze
and evaluate in later phases; Translator translates an AST into
yet another intermediate representation, Intermediate Representa-
tion (IR); finally, Interpreter evaluates an IR and produces a
result, or CFGBuilder constructs a Control Flow Graph (CFG)
from an IR to analyze the program. As we describe in later sec-
tions, AST, IR, CFG, Translator, and CFGBuilder are formally
specified and their implementations are publicly available.

The shaded box shows additional pluggable components to
the framework. Taking advantage of our framework, several col-
laborative research with academia and industry are in progress:
CloneDetector detects possible clones among multiple JavaScript
applications, Coverage calculates the degree to which the JavaScript
code has been tested, and Analyzer performs a simple type-based
analysis of JavaScript programs. Note that each component oper-
ates on a different intermediate representation. CloneDetector
traverses AST nodes, Coverage works closely with Interpreter
on IR, and Analyzer scans CFGs for various analyses.

3. Formal Specifications
The ECMAScript specification [9] describes the syntax and seman-
tics of JavaScript in prose. The voluminous and informal specifi-
cation makes it difficult to formally reason about JavaScript ap-
plications. While the 258-page specification describes JavaScript
in very much detail, it is not rigorous enough: it does not specify
every possible case exhaustively, it does not provide a high-level
description of various ways to achieve the same behavior, and it
includes a plenty of implementation-dependent features. For exam-
ple, Figure 3 shows the description of the typeof operator in the
ECMAScript specification, which does not specify the case when
evaluating UnaryExpression results in an error. Also, JavaScript
provides several ways to create function objects, but the specifi-
cation does not describe them collectively in one place but men-

Figure 3. The typeof operator in the ECMAScript specification

tions them sporadically throughout the specification3. The under-
specified, implementation-dependent, and implementation-defined
features result in incompatible JavaScript engines producing differ-
ent results for the same JavaScript program.

In this section, we present the formal specifications of the major
components of SAFE.

3.1 Intermediate Representations
SAFE provides three levels of intermediate representations: AST,
IR, and CFG. The highest level among them is AST, which is
very close to the JavaScript concrete syntax; thus, it is the most
applicable to source-level analyses such as clone detection. Lower
than AST but still higher than machine-level code is IR, which
is appropriate for evaluation by an interpreter. IR could be even
more compiled down to a lower-level representation for better
performance with aggressive code optimizations, and SAFE is open
for such a future extension. CFG is the best representation for
tracing control flows of a program; most program analyses perform
on CFGs. SAFE provides formal specification and implementation
of each intermediate representation4. Due to space limitations, we
describe only IR in this paper and we refer interested readers to
the formal specifications of AST and CFG in our open-source
repository [30].

Figure 4 presents the syntax of IR. A program p in IR is a se-
quence of IR statements, which consists of function declarations,
variable declarations, and IR statements. An IR statement s is a
simplified version of a corresponding AST statement, and an IR
expression e is an operator application, a property access, a literal,
or an identifier, which does not have any side effects. An IR mem-

3 The specification describes five ways to create function objects: Section
13.2 describes creating function objects by function declarations and func-
tion expressions, Section 15.3.2.1 describes the cases by function construc-
tors as functions and as part of new expressions, and Section 15.3.4.5 de-
scribes the case by the bind method of function objects.
4 Formal specifications are available at:
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/
revisions/master/entry/doc
and the implementations are available at:
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/
revisions/master/entry/astgen
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/
revisions/master/entry/src/kr/ac/kaist/jsaf/analysis/cfg

http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/doc
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/doc
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/astgen
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/astgen
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/src/kr/ac/kaist/jsaf/analysis/cfg
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/src/kr/ac/kaist/jsaf/analysis/cfg


p ::= s∗

s ::= x = e

| x = delete x

| x = delete x[x]

| x = {(m,)∗}

| x = [(e,)∗]

| x = x(x(,x)?)

| x = new x((x,)∗)

| x = function f(x,x) {s∗}

| function f(x,x) {s∗}

| x = eval(e)

| x[x] = e

| break x

| return e?

| with (x) s

| x : { s }

| var x

| throw e

| s∗

| if (e) then s (else s)?

| while (e) s

| try {s} (catch (x){s})? (finally {s})?

| 〈s∗〉

e ::= e ⊗ e
| 	e
| x[e]

| x

| �x
| this

| num
| str
| true

| false

| undefined

| null

m ::= x : x

| get f(x,x) {s∗}

| set f(x,x) {s∗}

⊗ ::= | | & | ^ | << | >> | >>> | + | - | * | / | %
| == | != | === | !== | < | > | <= | >=
| instanceof | in

	 ::= ~ | ! | + | - | void | typeof

Figure 4. Syntax of the JavaScript IR

ber m is either a data property or an accessor property, which is
introduced in the 5th edition of the ECMAScript specification. To
capture the function call semantics correctly as described in the EC-
MAScript specification, every function takes exactly two parame-
ters: the first parameter denotes ThisBinding, the value associated
with the this keyword within the function body, and the second
parameter denotes an array of the actual arguments.

(H,A, tb) ∈ Heap× Env× ThisBinding

H ∈ Heap = Loc
fin→ Object

A ∈ Env ::= #Global

| er :: A
er ∈ EnvRec = DeclEnvRec ∪ ObjEnvRec

σ ∈ DeclEnvRec = Var
fin→ StoreValue

l ∈ ObjEnvRec = Loc
tb ∈ ThisBinding = Loc

Figure 5. Execution contexts and other domains

ct ∈ Completion ::= nc
| ac

nc ∈ NormalCompletion ::= Normal(vt)
ac ∈ AbruptCompletion ::= Break(vt, x)

| Return(v)
| Throw(ve)

vt ∈ Val ∪ {empty}
ve ∈ ValError = Val ∪ Error

Figure 6. Completion specification type

Execution Context: Heap, Environment, and ThisBinding As
the ECMAScript specification describes, when an interpreter eval-
uates an ECMAScript executable code, it evaluates the code in an
execution context. We represent an execution context by a triple of
a heap, an environment, and a ThisBinding: (H,A, tb).

Figure 5 presents a partial set of domain definitions. A heap
maps locations to their corresponding objects; an environment is a
list of environment records ending with the global object environ-
ment record, #Global. An environment record is either a declara-
tive environment record or an object environment record: a declar-
ative environment record maps variables to their values, and an ob-
ject environment record itself is an object. This environment struc-
ture is one of the major differences from the 3rd edition of the EC-
MAScript specification.

Completion Specification Type Under an execution context, eval-
uating a statement may change the given heap and environment,
and it always produces a completion value. As Figure 6 describes,
a completion specification type is either a normal completion or
an abrupt completion; a normal completion denotes producing a
JavaScript value v or nothing (empty), and an abrupt completion
denotes either diverting the program control via the break state-
ment with a value vt and a label x, returning from a function call
with a value v, or throwing an exception ve. For example, the se-
mantics of the break statement is specified as follows:

(H,A, tb), break x→s (H,A), Break(empty, x)

Under an executable context (H,A, tb), evaluating the break state-
ment with a label x does not change the heap nor the environment
(H,A), and it produces the Break completion specification type
without any value (empty) but with the target label x.

Recovering from an Abrupt Completion When evaluating a
statement results in an abrupt completion, the abrupt completion
propagates back to its enclosing statements until a statement recov-
ers the abrupt completion. For example, a Break completion with
a target label x becomes a normal completion when it reaches an
enclosing statement labelled with x:

(H,A, tb), s→s (H ′, A′), Break(v, x)

(H,A, tb), x: {s} →s (H ′, A′), Normal(v)



When evaluating a statement s labelled with a label x results in a
Break completion with a value v and the same label x, the labelled
statement recovers the abrupt completion and produces a normal
completion with the value v. Similarly, a Return completion may
become a normal completion by a function call, and a Throw
completion may become a normal completion by a try statement.

The typeof Operator Now, let us present the operational se-
mantics rules for the typeof operator in our IR semantics, which
corresponds to the ECMAScript description in Figure 3. Using the
following helper function, TypeTag, which corresponds to Table 20
in Figure 3:

TypeTag(H, v) =

"undefined" if v = undefined

"object" if v = null

"boolean" if v ∈ Bool
"number" if v ∈ Num
"string" if v ∈ Str
"object" if v ∈ Loc ∧ ¬IsCallable(H, v)
"function" if v ∈ Loc ∧ IsCallable(H, v)

we formally specify the operational semantics of the typeof oper-
ator as follows:

(H,A, tb), e→e v
(H,A, tb), typeof e→e TypeTag(H, v)

(H,A, tb), e→e err
(H,A, tb), typeof e→e undefined

Unlike the informal description in the ECMAScript specification,
our formal specification exhaustively covers all the cases for evalu-
ating the typeof operator. The first rule describes that when eval-
uation of e produces a value v, evaluation of the typeof operator
produces a value by using the TypeTag helper function. The second
rule describes that when evaluation of e results in an error, evalua-
tion of the typeof operator produces undefined as most browsers
do.

3.2 Translations between Intermediate Representations
In addition to the formal specifications of intermediate represen-
tations, SAFE also provides formal specification and implemen-
tation of translations between them5. Due to space limitations, we
describe only several cases of the translation from AST to IR in this
paper and we refer interested readers to the formal specification of
CFG construction from IR in our open-source repository [30].

Translation from AST to IR consists of translation functions as
partially shown in Figure 7. The translation functions maintain an
environment Σ to handle the names of temporary variables and la-
bels created during translation. Translation of a single AST state-
ment may produce a list of IR statements; we use angle brackets
〈 and 〉 to denote a list, and semicolons to denote concatenation
of IR statements as a single list. The translation functions use in-
ternal names prefixed by �: a variable name prefixed by � such as
�obj denotes a temporary variable created during translation, and a
function name prefixed by � such as �getBase denotes an internal
function defined by the IR semantics.

5 Formal specifications are available at:
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/
revisions/master/entry/doc
and the implementations are available at:
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/
revisions/master/entry/src/kr/ac/kaist/jsaf/compiler

Figure 8. Syntax of iteration statements

The translation function ast2irpJpK takes a program in AST and
produces a program in IR by invoking translation functions on the
components of the program: ast2irfdJfdK for function declarations,
ast2irvdJvdK for variable declarations, and ast2irsJsK for statements.
As we describe in Section 4.2.1, Hoister already reorganized lists
of source elements in a program and function bodies in AST so that
function declarations and variable declarations appear before state-
ments. Because Hoister separates variable declarations from vari-
able initializations, the translation of a variable declaration in AST
to IR, ast2irvdJvdK, is very simple. The translation of a function
declaration is similar to that of a program. The function declaration
in IR takes only two parameters; the first parameter denotes the
this binding for a function call and the second parameter denotes
an array of the arguments given at a function call. Accordingly, a
function call is translated to take two arguments: the base value of
the function reference to denote its this binding and an array of
the arguments given at the call.

While IR provides a single iteration statement, while, JavaScript
supports six statements for iteration as shown in Figure 8: DoWhile,
While, For, ForVar, ForIn, and ForVarIn. Among them, ForVar
and ForVarIn are already desugared away by Hoister and the
others are translated using the IR while statement by Translator.
The translation of While is conventional but that of ForIn deserves
more attention. Because ForIn enumerates the properties of an ob-
ject and iterates its body until no property remains unvisited, we
introduce three internal helper functions: �iteratorInit creates an
iterator object for a given object, �iteratorHasNext checks whether
any property remains unvisited, and �iteratorNext returns a prop-
erty name to be visited next. Finally, the translation of a switch
statement consists of several subsequent translation functions to
handle a default clause, if any, and fall through cases.

3.3 Example Translation
To illustrate what we have described so far, consider the following
JavaScript code:

To show how each part is translated to intermediate representations,
we color the corresponding parts in the JavaScript source code
and the translated intermediate representations in the same color.
Because AST is very similar to the source code, we show only the
translated IR and CFG. The code first initializes the variable sum to
0 (in orange), and iteratively adds i to sum (in purple) where i is
incremented by 1 (in brown) from 1 (in blue) to 10 (in green). To
provide a debugging facility for our development, we add a special
debugging function � print. The code ends by printing sum (in
red).

The following code is a simplified version of the translated IR
from the above JavaScript code:

http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/doc
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/doc
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/src/kr/ac/kaist/jsaf/compiler
http://plrg.kaist.ac.kr/redmine/projects/jsf/repository/revisions/master/entry/src/kr/ac/kaist/jsaf/compiler


ast2irpJfd∗ vd∗ s∗K = 〈(ast2irfdJfdK(〈〉))∗ (ast2irvdJvdK〈〉)∗ (ast2irsJsK(〈〉))∗〉

ast2irfdJfunction f((x,)∗) {fd∗vd∗s∗}K(Σ) = function f(�this, �arguments){
(ast2irfdJfdK(Σ))∗

(var xi)
∗

(ast2irvdJvdKΣ)∗

(xi = �arguments["i"])∗

(ast2irsJsK(Σ; �this; �arguments))∗}

ast2irvdJvar xK(Σ) = var x

ast2irlhsJf((e, )∗)K(Σ)(x) = LET ((s∗, e) = ast2ireJeK(Σ)(�y))∗

IN (�obj = �toObject(f); (s∗; �y = e)∗;
�arguments = [(�yi,)∗];
�fun = �getBase(f);
x = �obj(�fun, �arguments), x)

ast2irsJwhile (e) sK(Σ) = LET (s∗, e) = ast2ireJeK(Σ)(�new1)
IN 〈�break : {

s∗;
while (e) {
�continue : {ast2irsJsK(Σ; �break; �continue)};
s∗;

}
}〉

ast2irsJfor (lhs in e) sK(Σ) = LET (s∗, e) = ast2ireJeK(Σ)(�new1)
IN 〈�break : {

s∗;
�obj = �toObject(e);
�iterator = �iteratorInit(�obj);
�cond1 = �iteratorHasNext(�obj,�iterator);
while (�cond1) {
�key = �iteratorNext(�obj,�iterator);
ast2irlvalJlhsK(Σ)(; �key)(false). 1;
�continue:{ast2irsJsK(Σ; �break; �continue)};
�cond1 = �iteratorHasNext(�obj,�iterator);

}
}〉

ast2irsJswitch (e) {cc∗1 (default:s∗)? cc∗2}K(Σ) = LET (s∗, e) = ast2ireJeK(Σ)(�val)
IN 〈�break : {

s∗; �val = e;

ast2ircaseJ(rev cc∗2)(s∗)?(rev cc∗1)K(Σ; �break; �val)}〉
ast2ircaseJ(case e : s∗1) :: cc∗2 (s∗2)? cc∗1K(Σ)(c∗) = 〈�label : {ast2ircaseJcc∗2 (s∗2)? cc∗1K(Σ)((e, �label) :: c∗)};

(ast2irsJs1K(Σ))∗〉
ast2ircaseJ() (s∗)? cc∗1K(Σ)(c∗) = 〈�label : {ast2ircaseJ() () cc∗1K(Σ)(c∗@[((), �label)])};

((ast2irsJsK(Σ))∗)?〉
ast2ircaseJ() () (case e : s∗) :: cc∗1K(Σ)(c∗) = 〈�label : {ast2ircaseJ() () cc∗1K(Σ)((e, �label) :: c∗)};

(ast2irsJsK(Σ))∗〉
ast2ircaseJ() () ()K(Σ)((e, l)∗) = 〈ast2irscondJ(e, l)∗K(Σ);

break Σ(�break)〉
ast2irscondJ(e, l) :: (c∗)K(Σ) = LET (s∗, e) = ast2ireJeK(Σ)(�cond)

IN 〈s∗;
if (Σ(�val) === e) then break l else ast2irscondJc∗K(Σ)〉

ast2irscondJ[((), l)]K(Σ) = 〈break l〉
ast2irscondJ()K(Σ) = 〈〉

Where c is either (e, l) or ((), l).

Figure 7. An excerpt of the translation rules from AST to IR



Because the translated IR includes verbose information such as
source location, we cleaned up such information to clearly show
the correspondence between the original JavaScript source code
and the generated IR code. Note that the conditional expression to
check whether i is less than equal to 10 (in green) shows up twice,
before the while statement and inside the while statement.

Now, the following graph presents the generated CFG from the
above IR code:

Each colored box denotes a sequence of instructions corresponding
to the IR code segment with the same color; several colored boxes
constitute a basic block. The Entry node denotes the beginning
of the program, three consecutive nodes next to Entry denote the
initialization part of the loop, the left branch with three nodes (of
the colors purple, brown, and green) denotes the loop body, and the
right branch ending with the Exit node denotes the control flow
after the loop. Note that the dashed lines to the ExitExc node from
various basic blocks denote possible exception flows.

4. Implementation
In this section, we describe how we realized the formal specifica-
tions of SAFE described in the previous section.

4.1 Why Yet Another Parser for JavaScript?
As we briefly mentioned in Section 2.1, our previous research on
a JavaScript module system required modifications of a JavaScript
parser and its AST nodes to extend the syntax to support modules.

/**
* SourceElement ::= Stmt
*/

abstract Stmt();
/**
* Stmt ::= do Stmt while ( Expr ) ;
*/

DoWhile(Stmt body, Expr cond);
/**
* Stmt ::= while ( Expr ) Stmt
*/

While(Expr cond, Stmt body);
/**
* Stmt ::= for ( Expr? ; Expr? ; Expr? ) Stmt
*/

For(Option<Expr> init, Option<Expr> cond,
Option<Expr> action, Stmt body);

/**
* Stmt ::= for ( lhs in Expr ) Stmt
*/

ForIn(LHS lhs, Expr expr, Stmt body);
/**
* Stmt ::= for ( var VarDecl(, VarDecl)* ;
* Expr? ; Expr? ) Stmt
*/

ForVar(List<VarDecl> vars, Option<Expr> cond,
Option<Expr> action, Stmt body);

/**
* Stmt ::= for ( var VarDecl in Expr ) Stmt
*/

ForVarIn(VarDecl var, Expr expr, Stmt body);

Figure 9. An excerpt of the high-level AST specification

We considered various parsers and AST structures from academia
and industry including ANTLR6, Scala’s parser combinators7,
Rhino, SpiderMonkey, Closure Tools8, JSConTest9, and JSure10,
but they were not satisfactory to us. Most of them do not cover the
entire JavaScript language and their AST structures do not reflect
the JavaScript syntax well. Even though the Rhino parser writ-
ten in Java is very powerful, because it is a ported version of the
hand-written SpiderMonkey parser in C++, we excluded it from
consideration for productivity reason.

We actively use open-source tools to automatically generate
parsers and intermediate representations. We provide a high-level
description of the AST node hierarchy as partially shown in Fig-
ure 9 where the indentation denotes a subclassing relationship.
Then, ASTGen [32] reads the description and generates Java
classes for the AST nodes with some utility methods such as get-
ters, setters, equals, and hashCode. Similarly, we provide a BNF-
style grammar and the corresponding action code for the grammar
productions, then Rats! [15] generates a JavaScript parser in Java.

The implementation languages of our framework are Scala and
Java, where most of the hand-written code are written in Scala.
We use both languages to take advantage of the abundant libraries
and tools in Java such as ASTGen and Rats!, and to get benefits
from pattern matching and higher-order functions in Scala. Also,
because both languages are compiled into Java bytecode, we enjoy
the seamless interoperability between them.

6 http://www.antlr.org
7 http://www.scala-lang.org/api/current/scala/util/
parsing/combinator/Parsers.html
8 https://developers.google.com/closure
9 https://github.com/heidegger/JSConTest
10 https://github.com/berke/jsure

http://www.antlr.org
http://www.scala-lang.org/api/current/scala/util/parsing/combinator/Parsers.html
http://www.scala-lang.org/api/current/scala/util/parsing/combinator/Parsers.html
https://developers.google.com/closure
https://github.com/heidegger/JSConTest
https://github.com/berke/jsure


4.2 AST Transformations due to the Quirky Semantics
Because of the quirky semantics of JavaScript, SAFE transforms
an AST to a simplified version to make it easier to analyze and
evaluate in later phases via the following phases:

• Hoister lifts the declarations of functions and variables inside
programs and functions up to the beginning of them;

• Disambiguator checks some static restrictions and renames
identifiers to unique names; and

• WithRewriter rewrites the with statements that do not in-
clude any dynamic code generation such as eval into other
statements without using the with statement but with the same
semantics.

Because all the intermediate representations preserve backward-
mapping information such as source locations, any errors detected
on intermediate representations are reported back to the users in
terms of JavaScript source locations.

4.2.1 Hoister
When JavaScript code is evaluated, functions and variables de-
clared in the code are first bound in the environment of the running
execution context before evaluating the code. In effect, the func-
tions and variables can be used before their textual declarations.
For example, the following code:

1 x;
2 var x = f();
3 function f() { return 42; }

shows that x on line 1 is used before its declaration on line 2. Be-
cause every compilation phase or an analysis of JavaScript pro-
grams should take this feature into account, SAFE hoists the decla-
rations of functions and variables to the beginning of the enclosing
programs and functions, which preserves the original semantics. By
taking care of this feature once at an early phase of compilation, the
tasks of the later phases become less burdensome.

After hoisting, the above code is transformed as follows:

1 function f() { return 42; }
2 var x;
3 x;
4 x = f();

The function declaration is hoisted as it is, but the variable decla-
ration of x is split into a declaration without initialization on line 2
and an assignment on line 4.

4.2.2 Disambiguator
Like compilers for conventional programming languages, SAFE
renames identifiers in JavaScript code to unique names via the
Disambiguator phase. By assigning unique names, identifiers
with the same name but in different scopes become explicitly dis-
tinct, which makes the tasks of the later phases easier. For example,
the following code:

1 function f() {
2 var x;
3 function() { var x; };
4 }
5 function h() { var x; }
6 var x;

is transformed as follows:

1 function f() {
2 var <>_x_1;
3 function() { var <>_x_2; };

abstract class Completion()
case class Normal(v:Option[Val]) extends Completion
abstract class Abrupt() extends Completion
case class Break(v:Option[Val],

l:IRId) extends Abrupt
case class Return(v: Val) extends Abrupt
case class Throw(e: ValError) extends Abrupt

Figure 10. Completion specification type in the interpreter

4 }
5 function h() { var <>_x_3; }
6 var x;

Also, Disambiguator checks some static restrictions such as
the following:

• A return statement should be within a function body.
• A continue statement should occur inside an iterator state-

ment.
• A labelled statement should not be enclosed by another labelled

statement with the same label.

4.2.3 with Rewriter
The with statement in JavaScript makes static analysis of JavaScript
applications difficult by introducing a new scope at run time and
thus invalidating lexical scoping. Thus, many static approaches to
JavaScript program analysis simply disallow the with statement.
Instead of simply avoiding the uses of the with statement, our
previous research [29] investigates the usage patterns of the with
statement in real-world JavaScript applications currently used in
the 944 most popular web sites, and it shows that we can rewrite
all the static occurrences of the with statement that does not have
any dynamic code generating functions.

Using the previous research, SAFE provides the WithRewriter
phase to statically eliminate the with statement in AST as long as
it is possible. Because evaluating the with statement creates an ob-
ject environment record, the properties of the given with object are
added to the current lexical environment for the body. Therefore,
if the with object has a property with the same name as an iden-
tifier in the body, the identifier becomes referring to the property;
otherwise, it refers to a name bound in its enclosing environment
record. The strategy of with rewriting is to replace each identifier
occurrence in the with body with a ternary expression to access
the correct entity depending on the existence of a property with the
same name in the with object. For example, the following with
statement:

with (expr) { a + b; }

is rewritten as follows:

var $f = toObject(expr);
("a" in $f ? $f.a : a) + ("b" in $f ? $f.b : b);

More detailed description of the with rewriting is available in our
previous work [29].

4.3 AST Translations and IR Interpretation
As we discussed in Section 3.2, Translator translates an AST
into an IR, CFGBuilder constructs a CFG from the IR, and
Interpreter evaluates the IR. Our implementation follows the
corresponding formal specifications as closely as possible so that
they can be mutually beneficial. For example, Figure 10 presents
the corresponding implementation of the completion specification
type in Figure 6, which is very close to each other.



Figure 11. The while statement in the specification

12.6.2 The while Statement

(H,A, tb), e→e err
(H,A, tb),while (e) s→s (H,A), Throw(err)

(H,A, tb), e→e v ToBoolean(v) = false

(H,A, tb),while (e) s→s (H,A), Normal(empty)

(H,A, tb), e→e v ToBoolean(v) = true
(H,A, tb), s→s (H ′, A′), ac

(H,A, tb),while (e) s→s (H ′, A′), ac

(H,A, tb), e→e v ToBoolean(v) = true
(H,A, tb), s→s (H ′, A′), nc

(H ′, A′, tb),while (e) s→s (H ′′, A′′), ac
(H,A, tb),while (e) s→s (H ′′, A′′), ac

(H,A, tb), e→e v ToBoolean(v) = true
(H,A, tb), s→s (H ′, A′), nc

(H ′, A′, tb),while (e) s→s (H ′′, A′′), Normal(empty)

(H,A, tb),while (e) s→s (H ′′, A′′), nc

(H,A, tb), e→e v ToBoolean(v) = true
(H,A, tb), s→s (H ′, A′), nc

(H ′, A′, tb),while (e) s→s (H ′′, A′′), Normal(v)

(H,A, tb),while (e) s→s (H ′′, A′′), Normal(v)

Figure 12. The while statement in the IR semantics

By developing both the formal specification and the implemen-
tation in parallel, we often found that one form reveals missing
cases in the other form, and vice versa. For example, consider the
description of the while statement in the ECMAScript specifica-
tion presented in Figure 11. For each construct in the ECMAScript
specification, we proceed to describe its operational semantics for-
mally as in Figure 12, and we simultaneously implement its seman-
tics as in Figure 13. The implementation in Scala often matches the
specification closely, or the initial implementation looks like a di-
rect translation of the formal specification and we optimize them
for performance improvement. In such cases, we keep the origi-
nal implementation in comment for documentation purpose. While
it is often unclear whether the informal prose in the ECMAScript
specification covers every possible case, the operational semantics
rules are well equipped to cover the cases exhaustively. At the same
time, while the operational semantics rules have many duplicated
antecedents which make the rules bulky, the concise implementa-
tion of the interpreter complements the rules and the pattern match-

/*
* 12.6.2 The while Statement
*/
case SIRWhile(info, cond, body) =>
var V: Option[Val] = None
var AC: Option[Abrupt] = None
var cont: Boolean = true
while (cont) {

walkExpr(cond) match {
case v:Val => cont = IH.toBoolean(v)
case err:JSError =>

AC = Some(throwErr(err, info))
cont = false

}
if (cont) {
walk(body) match {

case Normal(v) => if (v.isDefined) V = v
case ac:Abrupt =>

AC = Some(ac)
cont = false

}
}

}
AC match {

case Some(ac) => ac
case None => Normal(V)

}

Figure 13. The while statement in the IR interpreter

ing mechanism of Scala checks the exhaustiveness and redundancy
of the cases.

The implementation of the interpreter is still in progress. Cur-
rently, it does not support the eval code, and it partially supports
the with statement, the strict mode, and the standard built-in ob-
jects. We are actively developing the missing pieces, and we are
validating the interpreter implementation using regression testing.

4.4 Experiences with the Quirky Semantics
Because the ECMAScript specification does not provide a high-
level overview of the quirky semantics of JavaScript in one place,
we have encountered various inconsistencies and under-specified
behaviors sporadically. We share some of such experiences here.

Unlike conventional programming languages where the value
of a non-empty sequence of statements is the value of the last
statement of the sequence regardless of the value, in JavaScript,
it is the value of the last statement that produces a non-empty
value, if any; otherwise, the value of the sequence is empty. For
example, in the following code, an excerpt from the ECMAScript
specification [9]:

eval("1;;;;;")
eval("1;{}")
eval("1;var a;")

the calls to the eval function all return the value 1. If we do not
consider this semantics and translate an AST to an IR as we do
for the conventional languages, the translation will not preserve the
semantics. At the same time, if we apply such a semantics to get
the value of a sequence of IR statements, it will not preserve the
semantics either because a single AST statement often gets trans-
lated into a sequence of IR statements; a single AST statement of
the value empty can be translated into a sequence of IR statements
whose values are not all empty. For example, while the following
JavaScript code:



if (false) { 42; }

produces the value empty, the translated IR from the code:

<>_temp_1 = false;
if (<>_temp_1) { <>_temp_2 = 42; };

consists of IR statements whose values are false and empty, in
order. Thus, we should treat a sequence of IR statements translated
from a single AST statement differently from a sequence of IR
statements translated from a sequence of AST statements. For this
reason, we introduce the IRStmtUnit node in addition to the
IRSeq node: we wrap a sequence of IR statements translated from
a single AST statement with IRStmtUnit, and we use IRSeq to
wrap a sequence of IR statements translated form a sequence of
AST statements. Thus, the value of a sequence of IR statements
wrapped by IRStmtUnit is the value of the last statement in the
sequence, while the value of a sequence of IR statements wrapped
by IRSeq is the last non-empty value of the sequence.

The flexibility of JavaScript allows the number of arguments to
a function call to be different from the number of the function’s
parameters. When the number of the arguments is smaller than the
number of the parameters, the parameters whose corresponding ar-
guments do not exist are mapped to undefined. More specifically,
evaluation of the arguments at a function call creates an Arguments
object, which contains properties of the names from "0" to the
maximum number of the number of the arguments, say na, and
the number of the parameters, say np. Each of the properties maps
to the corresponding values of the arguments, except that when na

is smaller than np the properties of the names from na to np − 1
map to undefined.

In JavaScript, many standard built-in objects are functions in
the sense that they can be invoked with arguments, and at the same
time, some of them are constructors in the sense that they can be
used with the new operator. The issue here is that the semantics of
some built-in objects are very different depending on whether they
are used as functions or as constructors. For example, when a Date
object is used as a function[9, Section 15.9.2], it ignores its argu-
ments and behaves as it is called as (new Date()).toString()
returning a string value, while it creates a Date object when it is
used as a constructor[9, Section 15.9.3]. To handle this semantics
correctly, our AST-to-IR translation creates separate IR nodes for
function calls and object constructions even though their semantics
are very similar.

Because JavaScript provides prototype-based inheritance, ev-
ery object has an internal property called [[Prototype]]. Also,
an object may have a prototype of name "prototype"; in partic-
ular, every function automatically has a prototype property so
that it can be used as a constructor [9, Section 8.6.2]. A some-
what confusing part is that while [[Prototype]] and prototype
are quite different, they are used in an intermingled way. Be-
cause [[Prototype]] is an internal property, users can not ac-
cess it explicitly and the value of the property does not change
once it is set when the object is constructed. However, users can
explicitly access and change the value of prototype of an ob-
ject freely. In spite of such differences, they are used in an in-
termixed way which may lead to some confusion. For instance,
a instanceof b denotes whether b has a as its instance, and the
ECMAScript specification defines its semantics as the result of call-
ing the [[HasInstance]] internal method of b with the argument
of a, which checks whether the value of the "prototype" property
of b exists in the [[Prototype]] chain from the [[Prototype]]
internal property of a. Because users can change the value of the
"prototype" property of b any time, the result of the instanceof
operation can be surprising as we have shown in Figure 1 in Sec-
tion 1.

Another issue is implementation-dependent and implementation-
defined features in the ECMAScript specification. For example,
the description of Array.prototype.sort [9, Section 15.4.4.11]
includes several implementation-dependent semantics. When an
Array object includes some missing elements, it is said to be
sparse, and the semantics of Array.prototype.sort is full of
implementation-dependent behavior for sparse arrays. While the
evaluation of the Array.prototype.sort method involves eval-
uating the [[Get]], [[Put]], and [[Delete]] internal methods,
it is often impossible to evaluate them for sparse arrays. If a sparse
array has the [[Extensible]] internal property of false, it is im-
possible to put a non-existing array index property, and if a sparse
array has an index property with the [[Configurable]] internal
property of false, it is impossible to delete the property. Such
implementation-dependent and implementation-defined semantics
make it difficult to analyze JavaScript programs.

5. Related Work
The first thorough approach to formally specify a significant (if
not all) portion of the JavaScript programming language is an op-
erational semantics [23] that directly translates the ECMAScript
specification. It intends to faithfully capture the various aspects
of JavaScript and translate the informal ECMAScript specification
into a formal semantics. Therefore, it is well suited for analyzing
existing JavaScript programs and applying the analysis results back
to the JavaScript programs, though reasoning about the programs
and proving their properties using the semantics are not conven-
tional and complicated [11].

Another approach for a formal specification of JavaScript is to
devise a core calculus, λJS [17], which has a very different se-
mantics from the original JavaScript semantics but more conven-
tional. By providing a set of desugaring (or rather, compilation)
rules from JavaScript to λJS , it desugars away the quirky features
of JavaScript and translates them to a standard core calculus with
a conventional semantics. Thus, it suits well for extending and rea-
soning about the JavaScript language thanks to its conventional cal-
culus, though extra work is necessary to scale the analysis results
back to the full JavaScript language.

Jensen et al. [20] present a static analysis framework for
JavaScript using type analysis for the full JavaScript language.
Their framework is originally based on the T. J. Watson Libraries
for Analysis (WALA) [34], which is a collection of Java libraries
to support static analyses of Java bytecode and JavaScript. Because
WALA originally supported only Java programs, its support for
JavaScript is yet premature. It parses JavaScript programs using
the Rhino parser, and it translates the parsed JavaScript AST in
Rhino into the WALA common AST. Thus, it has the same prob-
lem as Rhino regarding supporting any research that modifies the
JavaScript syntax. Instead, Jensen et al. developed their own frame-
work to support the peculiar features of JavaScript more directly.

Recent research on JavaScript covers various aspects of the
JavaScript language such as its formal specifications [11, 17, 23],
type systems [3, 18, 33], static analyses [16, 20], and combinations
of static and dynamic analyses [5, 24] for JavaScript. Implementa-
tion of such research results often requires extensive modifications
of an existing framework. Implementing a proposed JavaScript
module system [21] requires modifications in the parser and the
AST structure, for example. Based on our experience, the hand-
written Rhino parser is too complicated to be applicable, and the
big semantic gap between JavaScript and λJS and poor perfor-
mance of the λJS interpreter are obstacles to be usable. We believe
that our framework would be useful for easily implementing future
research on JavaScript.



6. Conclusion
Motivated by our own struggles with the existing approaches, we
present SAFE, a scalable analysis framework for ECMAScript,
the very first attempt to support both formal specification and im-
plementation of JavaScript, developed open for the research com-
munity. To make the framework more usable to other researchers,
SAFE provides not only the formal specification of its various
components but also the implementation of them. Designing and
developing the formal specification and implementation of the
JavaScript language simultaneously has been a worthwhile ap-
proach; the operational semantics rules in our formal specifica-
tion and the pattern matching mechanism in our implementation
checked by the Scala compiler have been mutually beneficial to
catch missing cases in each other. Also, thorough investigation of
the ECMAScript specification revealed several issues and error-
prone semantics of JavaScript, which opens up possibilities for
future research in detecting erroneous programs. In order for the
framework to be as flexible, scalable, and pluggable as possible,
SAFE supports three levels of intermediate representations: AST,
the closest to the JavaScript source, IR for evaluation, and CFG for
flow-based analyses. Last but not least, we actively use third-party
open-source tools to automatically generate parsers and intermedi-
ate representations, which enhances the productivity of aggressive
research and development on JavaScript.

Currently, we have been finalizing the implementation of the
interpreter with extensive testing, and we have been collabo-
rating with researchers in academia and industry. As we have
shown in Figure 2 in Section 2.2, such collaborative research
includes CloneDetector, Coverage, and Analyzer. Each re-
search topic performs on different intermediate representations:
CloneDetector detects possible code clones among multiple
JavaScript programs via AST comparisons, Coverage calculates
code coverage of JavaScript programs via IR evaluation, and
Analyzer estimates type information via CFG traversal. We plan
to improve our current analyzer and add more analyses to the
framework, and we more than welcome other researchers using
our framework for their own research. As a theoretical foundation
of our JavaScript semantics specification, we’re working on mech-
anizing the formal semantics in Coq to guarantee some properties.
While we’re supporting most of the built-in objects both in the
interpreter implementation and an accompanying analysis imple-
mentation, we do not intend to formally describe built-in objects
and functions exhaustively.
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