Computing Periods...

Junhee Cho and Martin Ziegler, KAIST

Abstract. A *period* is the difference between the volumes of two semi-algebraic sets. Recent research has located these in low levels of the Grzegorczyk Hierarchy, that is, established a structural complexity-theoretic upper bound. The present extended abstract describes work in progress on their refined resource-oriented parameterized computational complexity.

An open question in Algebraic Model Theory asks for a real number which is not a *period*, that is, not 'definable' as the difference between two volumes of semi-algebraic sets; see [KZ01, Problem 3]. Recall that semi-algebraic means (a finite Boolean combination of) sets of solutions polynomial inequalities with integer coefficients

$$S_p := \{ (x_1, \dots, x_d) \mid p(x_1, \dots, x_d) > 0 \} \subseteq \mathbb{R}^d, \quad p \in \mathbb{Z}[x_1, \dots, x_d] .$$
(1)

The family of periods includes transcendental $\pi = \text{vol}\{(x, y) : x^2 + y^2 < 1\}$ yet is countable, hence missing most reals. Towards an explicit example, a recent series of works has gradually narrowed down periods to be computable in the sense of Recursive Analysis, of *elementary* computational complexity [Yos08] in the Grzegorczyk Hierarchy, and in fact even lower:

Fact 1 Let Lower Elementary be the smallest class of total multivariate functions $f : \mathbb{N}^d \to \mathbb{N} = \{0, 1, 2, \ldots\}$ containing the constants, projections, successor, modified difference $x \div y = \max\{x - y, 0\}$, and is closed under composition and bounded summation $f(\vec{x}, y) = \sum_{z=0}^{y} g(\vec{x}, z)$.

Write $\mathcal{M}^2 = \mathcal{E}^2$ for the smallest class of such f containing the constants, projections, successor, modified difference, binary multiplication, and is closed under composition and bounded search $\mu(f)(\vec{x}, y) = \min\{z \le y : f(\bar{z}, z) = 0\}.$

A real number r is lower elementary/in \mathcal{M}^2 if there exist lower elementary/ \mathcal{M}^2 functions $f, g, h: \mathbb{N} \to \mathbb{N}$ with $\left| r - \frac{f(N) - g(N)}{h(N)} \right| < 1/N$ for all N > 0.

- a) All functions from \mathcal{M}^2 are lower elementary; and the latter functions grow at most polynomially in the value of the arguments. In terms of the binary input length and with respect to bit-cost, lower elementary functions are computable using a linear amount of memory for intermediate calculations and output, that is, they belong to the complexity class FSPACE(n).
- b) FSPACE(n) is closed under bounded summation and therefore coincides with the class of lower elementary functions. The 0/1-valued functions (that is, decision problems) in \mathcal{M}^2 exhaust the class SPACE(n) [Rit63, §4]; cmp. [Kut87].
- c) π and $e = \sum_{n} 1/n!$ and Liouville's transcendental number $L = \sum_{n} 10^{-n!}$ and the Euler-Mascheroni Constant $\gamma = \lim_{n \to \infty} (-\ln(n) + \sum_{k=1}^{n} 1/k)$ are all lower elementary [Sko08, §3].
- d) The set of lower elementary real numbers constitutes a real closed field: Binary sum and product and reciprocal of lower elementary real numbers, as well as any real root of a non-zero polynomial with lower elementary coefficients, are again lower elementary [SWG12, Theorem 2].
- e) Arctan, natural logarithm and exponential as well as Γ and ζ function map lower elementary reals to lower elementary reals [TZ10, §9].
- f) Natural logarithm maps periods to periods; $\zeta(s)$ is a period for every integer $s \ge 2$ [KZ01, §1.1].
- g) Periods are lower elementary [TZ10, Corollary 6.4].
- h) Given a Boolean expression $\varphi(x_1, \ldots, x_m)$ as well as the degrees and coefficients of the polynomials p_j defining its constituents S_{p_j} , deciding whether the semi-algebraic set $\varphi(S_{p_1}, \ldots, S_{p_m})$ is non-empty/of given dimension [Koi99] is complete for the complexity class $\mathsf{NP}^{\mathbb{R}}_{\mathbb{R}} \supseteq \mathsf{NP}$.

Item a) follows by structural induction. Together with b) it relates resource-oriented to Grzegorczyk's structural Complexity Theory. Common efficient and practical algorithms tailored for approximating L, e, γ , or the period π do so up to absolute error $1/N \coloneqq 2^{-n}$ within time polynomial in the binary precision parameter $n = \log_2 N$ [Kan03]; whereas the best runtime bound known for SPACE(n) is only exponential [Pap94, Problem 7.4.7]. Note that the hardness Result h) does not seem to entail a lower bound on the problem of approximating the volume.

This raises the question, driving the present work in progress, of whether or not periods in general admit polynomial-time algorithms; and how/what further parameters affect their computational bit-complexity in addition to the binary output precision n [Ko91, Wei03]. Indeed we agree [KZ01, Problem 2] that efficient Reliable High-Precision Numerics and Experimental *Transcendental* Mathematics as computational tools can provide enriched insight into questions including, but not restricted to [Ret12], explicit candidates for non-periods.

We restrict to (volumes of) semi-algebraic sets inside the unit cube $[0;1)^d$. One approach to the 1D case d = 1 subdivides the interval [0;1) into sub-intervals $[a \cdot 2^{-n}, (a+1) \cdot 2^{-n})$, $\mathbb{N} \ni a < 2^n$; evaluates the polynomial(s) signs on a random point from each sub-interval; and counts those with positive sign, divided by 2^n : Since a polynomial of degree k can have at most k roots, this will approximate the true volume up to error $k \cdot 2^{-n}$. Moreover with high probability a random point will avoid all roots, hence rendering the sign computable; cmp. [MPPZ16, Definition 2]. The following suggests a way of generalizing this to higher dimensions:

Lemma 2. Fix a d-variate real or complex power series around zero $f(\vec{x}) = \sum_{\vec{j}} c_{\vec{j}} \cdot x_1^{j_1} \cdots x_d^{j_d}$ with $\vec{j} = (j_1, \dots, j_d)$ ranging over \mathbb{N}^d , converging absolutely and uniformly for all $\vec{x} = (x_1, \dots, x_d) \in [-R, +R]^d$. Abbreviate $|\vec{x}| := |x_1| + \dots + |x_d|$ and for 0 < r < R consider the condition

$$|c_{\vec{0}}| > \sum_{\vec{j}\neq\vec{0}} |c_{\vec{j}}| \cdot r^{|\vec{j}|} .$$
 (2)

- a) If 0 < r < R satisfies Condition (2), then f has no root in $[-r, +r]^d$.
- b) If $f(\vec{0}) \neq 0$, then there exists r > 0 such that Condition (2) holds.
- c) Suppose f is a polynomial of total degree $k = \max\{j_1 + \dots + j_d : c_{j_1,\dots,j_d} \neq 0\}$ and consider the N^d cubes $\prod_{j=1}^d [A_j/N, (A_j + 1)/N] \subseteq [0, 1)$ in $[0, 1)^d$, $A_1, \dots, A_d \in \{0, 1, \dots, N-1\} =: [N]$. Then at most $\mathcal{O}(k + d^2 \cdot N)^{d-1} \cdot (k + d^2)$ of them contain a root of f.

References

- [Kan03] Yasumasa Kanada. 計算機による円周率計算(特集円周率 π). J. Mathematical Culture, 1(1):72-83, 2003.
 [Ko91] Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston, 1991.
- [Koi99] Pascal Koiran. The real dimension problem is NP_R-complete. Journal of Complexity, 15(2):227-238, 1999.
- [Kut87] Miroslaw Kutylowski. Small Grzegorczyk classes. Journal of the London Mathematical Society, 36(2):193–210, 1987.
- [KZ01] Maxim Kontsevich and Don Zagier. Periods. In Björn Engquist and Wilfried Schmid, editors, Mathematics unlimited — 2001 and beyond, pages 771–808. Springer, 2001.
- [MPPZ16] Norbert Müller, Sewon Park, Norbert Preining, and Martin Ziegler. On formal verification in imperative multivalued programming over continuous data types. arXiv, 1608.05787, 2016.
- [Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
- [Ret12] Robert Rettinger. On computable approximations of Landau's constant. Log. Methods Comput. Sci., 8(4):4:15, 11, 2012.
- [Rit63] Robert W. Ritchie. Classes of predictably computable functions. Trans. Amer. Math. Soc., 106(1):139–173, 1963.
- [Sko08] Dimiter Skordev. On the subrecursive computability of several famous constants. Journal of Universal Computer Science, 14(6):861–875, 2008.
- [SWG12] Dimiter Skordev, Andreas Weiermann, and Ivan Georgiev. \mathcal{M}^2 -computable real numbers. J. Logic Comput., 22(4):899–925, 2012.
- [TZ10] Katrin Tent and Martin Ziegler. Computable functions of reals. *Münster J. Math.*, 3:43–65, 2010.
- [Wei03] Klaus Weihrauch. Computational complexity on computable metric spaces. *Mathematical Logic Quarterly*, 49(1):3–21, 2003.
- [Yos08] Masahiko Yoshinaka. Periods and elementary real numbers. arXiv, 0805.0349, 2008.