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Abstract. A period is the difference between the volumes of two semi-algebraic sets. Recent
research has located these in low levels of the Grzegorczyk Hierarchy, that is, established a
structural complexity-theoretic upper bound. The present extended abstract describes work
in progress on their refined resource-oriented parameterized computational complexity.

An open question in Algebraic Model Theory asks for a real number which is not a period,
that is, not ‘definable’ as the difference between two volumes of semi-algebraic sets; see [KZ01,
Problem 3]. Recall that semi-algebraic means (a finite Boolean combination of) sets of solutions
polynomial inequalities with integer coefficients

Sp ∶= {(x1, . . . , xd) ∣ p(x1, . . . , xd) > 0} ⊆ Rd, p ∈ Z[x1, . . . , xd] . (1)

The family of periods includes transcendental π = vol{(x, y) ∶ x2 + y2 < 1} yet is countable, hence
missing most reals. Towards an explicit example, a recent series of works has gradually narrowed
down periods to be computable in the sense of Recursive Analysis, of elementary computational
complexity [Yos08] in the Grzegorczyk Hierarchy, and in fact even lower:

Fact 1 Let Lower Elementary be the smallest class of total multivariate functions f ∶ Nd → N =
{0,1,2, . . .} containing the constants, projections, successor, modified difference x � y = max{x −
y,0}, and is closed under composition and bounded summation f(x⃗, y) = ∑y

z=0 g(x⃗, z).
WriteM2 = E2 for the smallest class of such f containing the constants, projections, successor,

modified difference, binary multiplication, and is closed under composition and bounded search
µ(f)(x⃗, y) = min{z ≤ y ∶ f(z̄, z) = 0}.

A real number r is lower elementary/in M2 if there exist lower elementary/M2 functions

f, g, h ∶ N→ N with ∣r − f(N)−g(N)
h(N)

∣ < 1/N for all N > 0.

a) All functions from M2 are lower elementary; and the latter functions grow at most polyno-
mially in the value of the arguments. In terms of the binary input length and with respect
to bit-cost, lower elementary functions are computable using a linear amount of memory for
intermediate calculations and output, that is, they belong to the complexity class FSPACE(n).

b) FSPACE(n) is closed under bounded summation and therefore coincides with the class of lower
elementary functions. The 0/1-valued functions (that is, decision problems) inM2 exhaust the
class SPACE(n) [Rit63, §4]; cmp. [Kut87].

c) π and e = ∑n 1/n! and Liouville’s transcendental number L = ∑n 10−n! and the Euler-Mascheroni
Constant γ = limn ( − ln(n) +∑n

k=1 1/k) are all lower elementary [Sko08, §3].
d) The set of lower elementary real numbers constitutes a real closed field: Binary sum and product

and reciprocal of lower elementary real numbers, as well as any real root of a non-zero poly-
nomial with lower elementary coefficients, are again lower elementary [SWG12, Theorem 2].

e) Arctan, natural logarithm and exponential as well as Γ and ζ function map lower elementary
reals to lower elementary reals [TZ10, §9].

f) Natural logarithm maps periods to periods; ζ(s) is a period for every integer s ≥ 2 [KZ01, §1.1].
g) Periods are lower elementary [TZ10, Corollary 6.4].
h) Given a Boolean expression ϕ(x1, . . . , xm) as well as the degrees and coefficients of the polyno-

mials pj defining its constituents Spj , deciding whether the semi-algebraic set ϕ(Sp1 , . . . , Spm)
is non-empty/of given dimension [Koi99] is complete for the complexity class NP0

R ⊇ NP.

Item a) follows by structural induction. Together with b) it relates resource-oriented to Grze-
gorczyk’s structural Complexity Theory. Common efficient and practical algorithms tailored for



approximating L, e, γ, or the period π do so up to absolute error 1/N ∶= 2−n within time poly-
nomial in the binary precision parameter n = log2N [Kan03]; whereas the best runtime bound
known for SPACE(n) is only exponential [Pap94, Problem 7.4.7]. Note that the hardness Result h)
does not seem to entail a lower bound on the problem of approximating the volume.

This raises the question, driving the present work in progress, of whether or not periods in
general admit polynomial-time algorithms; and how/what further parameters affect their compu-
tational bit-complexity in addition to the binary output precision n [Ko91, Wei03]. Indeed we agree
[KZ01, Problem 2] that efficient Reliable High-Precision Numerics and Experimental Transcen-
dental Mathematics as computational tools can provide enriched insight into questions including,
but not restricted to [Ret12], explicit candidates for non-periods.

We restrict to (volumes of) semi-algebraic sets inside the unit cube [0; 1)d. One approach to
the 1D case d = 1 subdivides the interval [0; 1) into sub-intervals [a ⋅ 2−n, (a + 1) ⋅ 2−n), N ∋ a < 2n;
evaluates the polynomial(s) signs on a random point from each sub-interval; and counts those
with positive sign, divided by 2n: Since a polynomial of degree k can have at most k roots, this
will approximate the true volume up to error k ⋅ 2−n. Moreover with high probability a random
point will avoid all roots, hence rendering the sign computable; cmp. [MPPZ16, Definition 2]. The
following suggests a way of generalizing this to higher dimensions:

Lemma 2. Fix a d-variate real or complex power series around zero f(x⃗) = ∑⃗ c⃗ ⋅ x
j1
1 ⋯x

jd
d

with ⃗ = (j1, . . . , jd) ranging over Nd, converging absolutely and uniformly for all x⃗ = (x1, . . . , xd) ∈
[−R,+R]d. Abbreviate ∣x⃗∣ ∶= ∣x1∣ + ⋯ + ∣xd∣ and for 0 < r < R consider the condition

∣c0⃗∣ > ∑⃗≠0⃗
∣c⃗∣ ⋅ r∣⃗∣ . (2)

a) If 0 < r < R satisfies Condition (2), then f has no root in [−r,+r]d.
b) If f(0⃗) ≠ 0, then there exists r > 0 such that Condition (2) holds.
c) Suppose f is a polynomial of total degree k = max{j1+⋯+jd ∶ cj1,...,jd ≠ 0} and consider the Nd

cubes ∏d
j=1 [Aj/N, (Aj + 1)/N) ⊆ [0,1) in [0,1)d, A1, . . . ,Ad ∈ {0,1, . . . ,N − 1} =∶ [N]. Then

at most O(k + d2 ⋅N)d−1 ⋅ (k + d2) of them contain a root of f .
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