Rewriting JavaScript Module System

[Extended Abstract]

Junhee Cho
~ KAIST
ssaljalu@kaist.ac.kr

ABSTRACT

Although JavaScript is one of the major languages used
for web and other general applications, it does not have
a language-level module system. Lack of module system
causes name conflicts when programmer uses libraries. We
introduce a JavaScript module system with formal seman-
tics. As an implementation, we also introduce a source-
to-source transformation from JavaScript with module to
JavaScript itself for current JavaScript engines to use them.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features

Keywords

JavaScript, module system, source-to-source transformation

1. INTRODUCTION

JavaScript [1] is the most prevalent client-side scripting
language for the web. It enriches web documents with dy-
namic reaction to user’s action. The primary method for a
web document to react to a user’s action is to reload an-
other web document on the web browser triggered by a click
on a link. For instance, in a small messanger widget nested
in a web document, however, it is not necessary to reload
the whole web document frequently for each message. With
JavaScript, one can reload only the small widget by com-
municating with the server through HTTP and updating
the web document with Brower API for Document Object
Model (DOM) [2]. The fact that 98 out of the 100 most
visited websites use JavaScript for client-side programming
according to Alexa [3] presents its share on the market that
cannot be ignored. Evenmore, JavaScript has been used
outside client-side programming for the web; for example,
node.js [4] for a general scalable network application, and
Samsung SmartTV SDK [5] for a SmartTV app.

Nevertheless most of JavaScript program use libraries such
as jQuery [6] or Prototype [7], JavaScript does not provide
any language-level module system, which can cause a name
conflict if distinct libraries using a common symbol are in-
serted in the same context. Since both jQuery and Proto-
type use the symbol $, if both libraries are inserted in a
HTML document by <script> tags, the one inserted later

Copyright is held by the author/owner(s).
AOSD’13 Companion, March 24-29, 2013, Fukuoka, Japan.
ACM 978-1-4503-1873-0/13/03.

overrides the other for the symbol $. In substitution for
module system, module pattern is recommended. However,
since it is not a system on language level, it is hard to guar-
antee properties on module system.

Because of the needs for language-level module system,
ECMAScript Harmony [8], a proposal for the next genera-
tion of JavaScript, introduces a language-level module sys-
tem. Since ECMAScript Harmony is still a work in progress,
it does not provide complete module semantics, but part of
module semantics in high-level description in prose. Kang
et al. [9] introduced the formal specification and the imple-
mentation of a module system based on the module system
in ECMAScript Harmony by the means of desugaring rule
from JavaScript with module to A;s [10], a core-calculus of
JavaScript. Unfortunately, due to the innate limitations of
AJss, the module system introduced is impractical. First of
all, desugared A ;s program is very large, and interpretation
of program involves a large amount of memory usage. Be-
cause the main objective for Asg is to prove properties on
JavaScript easily, interpreting a general JavaScript program
with Ass is nearly impossible. Ajg is a purely functional
language. Thus, it consumes a lot of memory for immutable
objects while interpreting a program. Secondly, Ajs does
not support eval function which generates code dynamically
in run-time while use of dynamic features is evident in web-
sites [11, 12, 13]. In the web environment, most of data is
encoded in either XML or JSON. While we need XML parser
to parse XML string, we do not need JSON parser to parse
JSON string because JSON string is JavaScript expression
and evaluating JSON string with eval function gives JSON
object. Likewise, though we can avoid use of eval function,
it is widely used in practice due to its convenience.

2. JAVASCRIPT MODULE SYSTEM

We introduce the formal specification and the implemen-
tation of a module system based on the aforementioned pre-
vious works. The module system is based on Scalable Anal-
ysis Framework for ECMAScript (SAFE) [14]: the formal
specification is based on the formal specification of SAFE
Intermediate Representation (IR), and the implementation
is done by adding module rewriter between SAFE Parser
and SAFE Interpreter in the interpretation pipeline. The
formal specification provides formal module semantics by
itself and formal rewriting rule from JavaScript with mod-
ule to JavaScript itself. The implementation provides the
module rewriter implementing the rewriting rule. These are
available at SAFE repository.

A module can be declared only in the global context and in



module bodies. Before evaluate program, module environ-
ment is constructed statically. It holds all the names in the
global object and the modules, and all the export-import
relations. In the global context, function, variable, mod-
ule, and import declarations, and statements are evaluated
in the order. A module declaration introduces new scope
called module scope, and the module body is evaluated in
the module scope. Also, it results module instance object
with getters for the exported names in the module. Module
declarations are evaluated by instantiating all the modules,
making all the module instance objects read-only, and ini-
tializing all the modules. Instantiating a module is to con-
struct the module scope and the module instance object. For
mutually recursive imports, function, variable, and nested
module declarations are evaluated in the module scope, and
the getters for the exported names are set in the module in-
stance object. The next step is to seal the module instance
objects, i.e., to make them read-only. Finally, initializing a
module is to evaluate the statements in the module body in
the module scope. Also, each imported name is substituted
by the canonical name of which the imported name is alias.

To rewrite the module system, module pattern is used. In
JavaScript, any function can be used as a constructor in the
new statement. A module declaration is rewritten to a new
statement with a function as a constructor. The function
scope is used as the module scope, and the newly created
object bound to this is used as the module instance object.
First of all, the function instantiates the module, i.e., the
function body consists of the function, the variable, and the
nested module declarations, and statements to set getters for
the exported names in the module body. To come back to
the function scope from the outside after instantiation, the
function also set a temporary closure for initialization in the
global context with a random fresh name. Then, the module
instance objects are sealed by Object.seal. Now, calling
the closure initializes the module, i.e., the statements of the
module body is evaluated in the function scope. Finally, the
closures are deleted from the global context.

The significant difference from Kang et al. is that JavaScript

with module is translated to JavaScript itself instead of Ass.
Additionally, the translation is source-to-source translation
preserving the name space with limited support for eval
function. Since the translation is source-to-source transla-
tion, it is able to utilize any current JavaScript engine with
the module rewriter to interpret a program in JavaScript
with module. For instance, programmers may develop their
JavaScript program with module, and translate it to the cur-
rent JavaScript program without module using the module
rewriter so that any current JavaScript engine can run the
program. JavaScript community tends to accept an advance
of the specification slowly. There is a time gap of couple of
years for them to accept new JavaScript specification. In the
mean while, the module rewriter would be a substitution un-
til JavaScript engines accept the module system. Besides,
the module rewriter preserves the name space except dur-
ing compiling modules. For the eval function calls after
compiling modules, the semantics are preserved. However,
the temporary helper functions have a chance of name con-
flict with new names that the eval function calls introduce
during compiling modules. Though, by choosing long ran-
dom strings of complicated characters as fresh names for the
helper functions, for example, with non-Latin alphabets, we
can reduce the possibility of name conflict.

3. CONCLUSION

In summary, we introduced a JavaScript module system
based on ECMAScript Harmony and Kang et al. providing
the formal specification of module semantics and module
rewriter, and the implementation of module rewriter. The
module rewriter is source-to-source translator with limited
support of eval function. As a future work, to guaran-
tee the validity of module environment and translation by
formal proof takes the highest priority. Proving the valid-
ity of module environment might be analogous to Kang et
al. because the module environment is analogous to that of
them. Proving the validity of translation is more challenging
because nothing has been proven for SAFE IR while some
properties of Ass have been already proven like the safety.

Acknowledgments

This work is supported in part by the National Research
Foundation of Korea (NRF) (Grants 2012-0000469 and 2012-
0005256), Microsoft Research Asia, Samsung Electronics,
and S-Core.

References

[1] ECMA. ECMA-262: ECMAScript language
specification. 5th edition, 2009.

[2] W3C. DOM. http://www.w3.org/DOM/.

[3] Salvatore Guarnieri, Marco Pistoia, Omer Tripp,
Julian Dolby, Stephen Teilhet, Ryan Berg. Saving the
world wide web from vulnerable JavaScript. In
Proceedings of the 20th ISSTA, 2011.

[4] Joynet. Node.js. http://nodejs.org/.

[5] Samsung Electronics. Samsung Smart TV.
http://developer.samsung.com/smarttv.

[6] jQuery Foundation. jQuery. http://jquery.com/.

[7] Prototype Core Team. Prototype.
http://prototypejs.org/.

[8] Dave Herman and Sam Tobin-Hochstadt. Harmony
Proposals — Modules. http://wiki.ecmascript.org/
doku.php?id=harmony:modules.

[9] Seonghoon Kang and Sukyoung Ryu. Formal
specification of a JavaScript module system. In
Proceedings of OOPSLA, 2012.

[10] Arjun Guha, Claudiu Saftoiu, and Shriram
Krishnamurthi. The essence of Javascript. In
Proceedings of the 24th ECOOP, 2010.

[11] Gregor Richards, Christian Hammer, Brian Burg, Jan
Vitek. The eval that men do: a large-scale study of
the use of eval in JavaScript applications. In
Proceedings of the 25th ECOOP, 2011.

[12] Gregor Richards, Sylvain Lebresne, Brian Burg, Jan
Vitek. An analysis of the dynamic behavior of
JavaScript programs. In Proceedings of PLDI, 2010.

[13] Paruj Ratanaworabhan, Benjamin Livshits, David
Simmons, and Benjamin Zorn, JSMeter. Comparing
the behavior of JavaScript benchmarks with real web
applications. In Proceedings of the USENIX 2010
Conference on Web Application Development, 2010.

[14] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho,
and Sukyoung Ryu. SAFE: Formal Specification and
Implementation of a Scalable Analysis Framework for
ECMAScript. In Proceedings of FOOL, 2012.



