
Towards standardizing Korean Grammatical Error Correction:
Datasets and Annotation

Soyoung Yoon
KAIST AI

soyoungyoon@kaist.ac.kr

Sungjoon Park
SoftlyAI Research, SoftlyAI

sungjoon.park@softly.ai

Gyuwan Kim
UCSB∗

gyuwankim@ucsb.edu

Junhee Cho
Google

junheecho@google.com

Kihyo Park
Cornell University

kp467@cornell.edu

Gyutae Kim
SoftlyAI

gt.kim@softly.ai

Minjoon Seo
KAIST AI

minjoon@kaist.ac.kr

Alice Oh
KAIST SC†

alice.oh@kaist.edu

Abstract

Research on Korean grammatical error correc-
tion (GEC) is limited, compared to other ma-
jor languages such as English. We attribute
this problematic circumstance to the lack of
a carefully designed evaluation benchmark for
Korean GEC. In this work, we collect three
datasets from different sources (Kor-Lang8,
Kor-Native, and Kor-Learner) that covers a
wide range of Korean grammatical errors. Con-
sidering the nature of Korean grammar, We
then define 14 error types for Korean and pro-
vide KAGAS (Korean Automatic Grammati-
cal error Annotation System), which can au-
tomatically annotate error types from paral-
lel corpora. We use KAGAS on our datasets
to make an evaluation benchmark for Korean,
and present baseline models trained from our
datasets. We show that the model trained with
our datasets significantly outperforms the cur-
rently used statistical Korean GEC system
(Hanspell) on a wider range of error types,
demonstrating the diversity and usefulness of
the datasets. The implementations and datasets
are open-sourced.1

1 Introduction

Writing grammatically correct Korean sentences
is difficult for learners studying Korean as a For-
eign Language (KFL) and even for native Korean
speakers due to its morphological and orthographi-
cal complexity such as particles, spelling, and col-
location. Its word spacing rule is complex since
there are many domain-dependent exceptions, of
which only around 20% of native speakers under-
stand thoroughly (Lee, 2014). Since Korean is an
agglutinative language (Sohn, 2001; Song, 2006),
getting used to Korean grammar is time-consuming

∗ University of California, Santa Barbara
† School of Computing, KAIST

1Code for model checkpoints and KAGAS: https:
//github.com/soyoung97/Standard_Korean_GEC. Dataset
request form: https://forms.gle/kF9pvJbLGvnh8ZnQ6

for KFL learners whose mother tongue is non-
agglutinative (Haupt et al., 2017; Kim, 2020). How-
ever, despite the growing number of KFL learners
(Lee, 2018), little research has been conducted on
Korean Grammatical Error Correction (GEC) be-
cause of the previously described difficulties of the
Korean language. Another major obstacle to devel-
oping a Korean GEC system is the lack of resources
to train a machine learning model.

In this paper, we propose three datasets that
cover various grammatical errors from different
types of annotators and learners. The first dataset
named Kor-Native is crowd-sourced from native
Korean speakers. Second, Kor-Learner are from
KFL learners that consists of essays with de-
tailed corrections and annotations by Korean tutors.
Third, Kor-Lang8 are similar with Kor-Learner ex-
cept that they consist of sentences made by KFL
learners but corrected by native Koreans on social
platforms who are not necessarily linguistic experts.
We also analyze our datasets in terms of error type
distributions.

While our proposed parallel corpora can be
served as a valuable resource to train a machine
learning model, another concern is about the an-
notation of the datasets. Most existing datasets do
not have annotation, which makes it hard to use
them for evaluation. A major weakness of human
annotation is that (1) experts specialized in Korean
Grammar are expensive to hire, (2) making them
annotate a large number of parallel corpora is not
scalable, and (3) the error types and schema are dif-
ferent by datasets and annotators, which is counter-
productive. Another way that we can analyze and
evaluate on the dataset is by automatic annotation
from parallel corpora. While there is already one
for English called ERRANT (Bryant et al., 2017),
there is no automatic error type detection system
for Korean. We cannot fully demonstrate and clas-
sify error types and edits by using ERRANT, be-
cause Korean has many different characteristics

https://github.com/soyoung97/Standard_Korean_GEC
https://github.com/soyoung97/Standard_Korean_GEC
https://forms.gle/kF9pvJbLGvnh8ZnQ6

than English (Section 4.5). This motivates us to
develop an automated error correction system for
Korean (KAGAS), along with annotated error types
of refined corpora using KAGAS.

Lastly, we build a simple yet effective baseline
model based on BART (Lewis et al., 2019) trained
from our datasets. We further analyze the gener-
ated outputs of BART on how the accuracy of each
system differs by error types when compared with
a statistical method called Hanspell,2 providing use
cases and insights gained from analysis. To summa-
rize, the contributions of this paper are as follows:
(1) collection of three different types of parallel
corpora for Korean GEC, (2) a novel grammatical
error annotation toolkit for Korean called KAGAS,
and (3) a simple yet effective open-sourced base-
line Korean GEC models trained on our datasets
with detailed analysis by KAGAS.

2 Related Work
Datasets Well-curated datasets in each language
are crucial to build a GEC system that can capture
language-specific characteristics (Bender, 2011).
In addition to several shared tasks on English GEC
(Ng et al., 2014; Bryant et al., 2019; Rao et al.,
2018), resources for GEC in other languages are
also available (Wu et al., 2018; Li et al., 2018; Ro-
zovskaya and Roth, 2019; Koyama et al., 2020;
Boyd, 2018). Existing works on Korean GEC (Min
et al., 2020; Lee et al., 2021; Park et al., 2020)
are challenging to be replicated because they use
internal datasets or existing datasets without provid-
ing pre-processing details and scripts. Therefore,
it is urgent to provide publicly available datasets
in a unified and easily accessible form with pre-
processing pipelines that are fully reproducible for
the GEC research on Korean.

Evaluation M2 scorer (Dahlmeier and Ng,
2012) which measures precision, recall, and F0.5

scores based on edits, is the standard evaluation
metric for English GEC models. It requires an M2

file with annotations of edit paths from an erro-
neous sentence to a corrected sentence. However,
it is expensive to collect the annotations by hu-
man workers as they are often required to have ex-
pert linguistic knowledge. When these annotations
are not available, GLEU (Napoles et al., 2015), a
simple variant of BLEU (Papineni et al., 2002), is
used instead by the simple n-gram matching. An-
other way of generating an M2 file for English in a

2https://speller.cs.pusan.ac.kr/

Kor-Learner Kor-Native Kor-Lang8

Sentence pairs 28,426 17,559 109,559

Avg. token length 14.86 15.22 13.07
Edits 59,419 29,975 262,833

Edits / sentence 2.09 1.71 2.40
Avg. tokens per edit 0.97 1.40 0.92

Prop. tokens changed 28.01% 29.37% 39.42%

Table 1: Data statistics for Kor-Learner, Kor-Lang8,
and Kor-Native.

rule-based manner is by using the error annotation
toolkit called ERRANT (Bryant et al., 2017). We
extend ERRANT to make KAGAS and utilize it to
align and annotate edits on our datasets and make
an M2 file to evaluate on Korean GEC models.

Models Early works on Korean GEC focus on de-
tecting particle errors with statistical methods (Lee
et al., 2012; Israel et al., 2013; Dickinson et al.,
2011). A copy-augmented transformer (Zhao et al.,
2019) by pre-training to denoise and fine-tuning
with paired data demonstrates remarkable perfor-
mance and is widely used in GEC. Recent studies
(Min et al., 2020; Lee et al., 2021; Park et al., 2020)
apply this method for Korean GEC. On the other
hand, Katsumata and Komachi (2020) show that
BART (Lewis et al., 2020), known to be effective
on conditioned generation tasks, can be used to
build a strong baseline for GEC systems. Follow-
ing this work, we load the pre-trained weights from
KoBART,3 a Korean version of BART, and finetune
it using our GEC datasets.

3 Data Collection
We build three corpora for Korean GEC: Kor-
Learner (§3.1), Kor-Native (§3.2), and Kor-
Lang8 (§3.3). The statistics of each dataset is de-
scribed on Table 1. We describe the main character-
istic and source of the dataset and how it is prepro-
cessed in the following subsection. We expect that
different characteristics of these diverse datasets
in terms of quantity, quality, and error type distri-
butions (Figure 1) allow us to train and evaluate a
robust GEC model.

3.1 Korean Learner Corpus (Kor-Learner)

Korean Learner Corpus is made from the NIKL
learner corpus4. The NIKL learner corpus contains
essays written by Korean learners and their gram-

3https://github.com/SKT-AI/KoBART
4The NIKL learner corpus is created by the National Insti-

tute of Korean Language (NIKL). Usage is allowed only for
research purposes, and citation of the origin (NIKL) is needed
when using it.

https://speller.cs.pusan.ac.kr/
https://github.com/SKT-AI/KoBART

Figure 1: The distribution of error types by our proposed dataset (Upper three). Percentages are shown for error
types that has larger than 5%. The bottom row (Lang8) is for comparison with Kor-Lang8. We can see that Kor-
Lang8 has fewer outliers and with decrease in INS or DEL edits than the original Lang8 (bottom). The distribution
of error types for KFL learners show that NOUN, CONJ, END and PART are frequent than native learners, and
word space errors (purple) are the most frequent for native learners (Kor-Native), similar with previous corpus
studies (Kim, 2020; Lee, 2020).

matical error correction annotations by their tutors
in an morpheme-level XML file format. The orig-
inal format is described at Appendix A.4.1. Even
though the NIKL learner corpus contains annota-
tions by professional Korean tutors, it is not pos-
sible to directly be used as a corpus for training
and evaluation for two reasons. First, we cannot re-
cover the corrected sentence from the original file
nor convert the dataset into an M2 file format (Sec-
tion 2) since the dataset is given by morpheme-level
(syllable-level) correction annotations, not word-
level edits. A simple concatenation of morpheme-
level edits does not make a complete word since
Korean is an agglutinative language. Therefore, we
refer to the current Korean orthography guidelines5

to merge morpheme-level syllables into Korean
words (Appendix A.4.3 6). Second, some XML
files had empty edits, missing tags, and inconsis-
tent edit correction tags depending on annotators,
so additional refinement and proofreading was re-
quired. Therefore, the authors manually inspected
the output of parallel corpora and discard sentences
with insufficient annotations (Appendix A.4.2). Af-
ter applying appropriate modifications to the NIKL
corpus, we were able to make Kor-Learner which
contains word-level parallel sentences with high
quality.

3.2 Native Korean Corpus (Kor-Native)

The purpose of this corpus is to build a parallel cor-
pus representing grammatical errors native Korean
speakers make. Because the Korean orthography

5http://kornorms.korean.go.kr/regltn/
regltnView.do

6The merging codes are also open-sourced at our reposi-
tory.

guidelines are complicated consisting of 57 rules
with numerous exceptions,5 only a few native Ko-
rean speakers fully internalize all from the guide-
lines and apply them correctly. Thus, the standard
approach depends on the manpower of Korean lan-
guage experts, which is not scalable and is very
costly. Thus, we introduce our novel method to cre-
ate a large parallel GEC corpus from correct sen-
tences, which does not depend on the manpower
of experts, but the general public of native Korean
speakers. Our method is characterized as a back-
ward approach. We collect grammatically correct
sentences from two sources,7 and read the correct
sentences using Google Text-to-Speech (TTS) sys-
tem. We asked the general public to dictate gram-
matically correct sentences and transcribe them.
The transcribed sentences may be incorrect, con-
taining grammatical errors that the audience often
makes. Figure 1 shows that most of the collected
error types were on word spacing. While the distri-
butions of transcribed and written language cannot
be exactly identical, we observe that the error type
distribution of Kor-Native aligns with that of Native
Korean (Shin et al., 2015) in that they are domi-
nated by word spacing errors, which means that
the types of errors of Kor-Native can serve as a rea-
sonable representative to real-world writing errors
made by Native Korean. After the filtering process
described in Appendix A.2, we have 17,559 sen-
tence pairs containing grammatical errors.

http://kornorms.korean.go.kr/regltn/regltnView.do
http://kornorms.korean.go.kr/regltn/regltnView.do

Valid
loss

Self-
GLEU

GLEU on
KoBART

Dataset
size

Lang8 (Bef.) 1.53 15.01 19.69 204,130
Kor-Lang8(Aft.) 0.83 19.38 28.57 109,559

Table 2: Evaluation scores on the validation set for
Lang8 (Mizumoto et al., 2011), the original lang8
dataset filtered by unique pairs in Korean, and Kor-
Lang8, which is after the refinement by §3.3.

3.3 Lang-8 Korean Corpus (Kor-Lang8)

Lang-88 is one of the largest social platforms for
language learners (Mizumoto et al., 2011). We ex-
tract Korean data from the NAIST Lang-8 Learner
Corpora9 by the language label, resulting in 21,779
Korean sentence pairs. However, some texts are
answers to language-related questions rather than
corrections. The texts inside the raw Lang-8 corpus
is noisy and not all of them form pairs, as previous
works with building Japanese corpus out of Lang-8
(Koyama et al., 2020) also pointed out. To build
a GEC dataset with high proportion of grammati-
cal edits, we filtered out sentence pairs with a set
of cleanup rules regarding the Korean linguistics,
which is described in Appendix A.3.

Comparison with original Lang8. To prove the
increased quality of Kor-Lang8, we compare the
model training results and error type distribution
between the original Korean version of Lang8 and
Kor-Lang8. We perform minimum pre-processing
to the original Korean Lang8-data which discard
texts that do not have pairs and preserve unique
original-corrected sentence pairs to enable train-
ing and make a fair comparison with Kor-Lang8,
leaving out 204,130 pairs. Table 2 shows that a
model trained with Kor-Lang8 achieve better re-
sults with lower validation loss, higher self-GLEU
scores (§5.1), and higher scores when trained with
KoBART, showing that there are fewer outliers
on Kor-Lang8. 10 Figure 1 shows the difference
in error type distributions before and after Lang8
refinement.

Figure 2: An example of an M2 file output by KAGAS.
Translated into English. Note that "to school" is treated
as one word for the translation example.

4 KAGAS
We propose Korean Automatic Grammatical error
Annotation System (KAGAS) that automatically
aligns edits and annotate error types on parallel cor-
pora that overcomes many disadvantages of hand-
written annotations by human (Appendix B.2). Fig-
ure 2 shows the overview of KAGAS. As the scope
of the system is to extract edits and annotate an er-
ror type to each edit, our system assumes the given
corrected sentence is grammatically correct. Then,
our system takes a pair of the original sentence and
the corrected sentence as input and output aligned
edits with error types. We further extend the us-
age of KAGAS to analyze the generated text of
our baseline models by each error type in Table 7
at Section 6. In this section, we describe in detail
about the construction and contributions of KA-
GAS, with human evaluation results.

4.1 Automatic Error Annotation for other lan-
guages

Creating a sufficient amount of human-annotated
dataset for GEC on other languages is not triv-
ial. To navigate this problem, there were attempts
to adapt ERRANT (Bryant et al., 2017) onto lan-
guages other than English for error type annotation,
such as on Czech (Náplava et al., 2022), Hindi
(Sonawane et al., 2020), Russian (Katinskaia et al.,
2022), German (Boyd, 2018), and Arabic (Belke-
bir and Habash, 2021), but no existing work has
previously extended ERRANT onto Korean. When

7(1) The Center for Teaching and Learning for Korean, and
(2) National Institute of Korean language

8https://lang-8.com
9https://sites.google.com/site/

naistlang8corpora/
10Since the redistribution of the NAIST Lang-8 Learner

Corpora is not allowed, we provide the full script used to
automatically make Kor-Lang8 with the permission of using
the corpora for the research purpose only.

https://lang-8.com
https://sites.google.com/site/naistlang8corpora/
https://sites.google.com/site/naistlang8corpora/

Error
Code

Description &
Acceptance Rate (%) Example

INS
A word is inserted.
100.00% ± 0.00%P

Original: 고등학교때어긴경험

Corrected: 고등학교때규칙을어긴경험

Translation: Experience to break a rule in high school

DEL
A word is deleted.
100.00% ± 0.00%P

Original: 전쟁끝직후장군들은사형을선고받았다.
Corrected: 전쟁직후장군들은사형을선고받았다.
Translation: After the war, the generals are sentenced to death.

WS
Spacing between
words is changed.

100.00% ± 0.00%P

Original: 이옷은더러워요.
Corrected: 이옷은더러워요.
Translation: This cloth is dirty.

WO
The order of

words is changed.
97.44% ± 3.51%P

Original: 저는더한국어를배우고싶어요.
Corrected: 저는한국어를더배우고싶어요.
Translation: I want to learn Korean further.

SPELL
Spelling error

97.44% ± 3.51%P

Original: 파티에서우리는춤을쳐요.
Corrected: 파티에서우리는춤을춰요.
Translation: We dance at the party.

PUNCT
Punctuation error
98.72% ± 2.50%P

Original: 1993년의겨울의일이였다.
Corrected: 1993년 ,겨울의일이였다.
Translation: It was 1993, a happening in winter.

SHORT
An edit that does not change
the structure of morphemes.

73.08% ± 9.84%P

Original: 한국어는저한테너무어려운언어이었어요.
Corrected: 한국어는저한테너무어려운언어였어요.
Translation: Korean Language was too difficult to me.

VERB
An error on verb

79.49% ± 8.96%P

Original: 어제친구에게편지를쌌어요.
Corrected: 어제친구에게편지를썼어요.
Translation: I wrote a letter to my friend yesterday.

ADJ
An error on adjective

73.08% ± 9.84%P

Original: 진한친구

Corrected: 친한친구

Translation: A close friend.

NOUN
An error on noun
75.64% ± 9.53%P

Original: 나중에기회가있을때한국에유학러가고싶습니다.
Corrected: 나중에기회가있을때한국에유학가고싶습니다.
Translation: I want to study abroad in Korea in the future.

PART
An error on particle
97.44% ± 3.51%P

Original: 하와이에서사는우리사촌

Corrected: 하와이에사는우리사촌

Translation: My cousin living in Hawaii

END
An error on ending
87.18% ± 7.42%P

Original: 오래기다려요.
Corrected: 오래기다렸어요.
Translation: I waited for a long time.

MOD
An error on modifier

89.74% ± 6.73%P

Original: 점심이나무작은나머지배고팠어요.
Corrected: 점심이너무작은나머지배고팠어요.
Translation: I was hungry because I had such a small launch.

CONJ
An error on conjugation

43.59% ± 11.00%P

Original: 오늘은머리를잘라에갔다.
Corrected: 오늘은머리를자르러갔다.
Translation: I went to a barber to get my hair cut today.

Table 3: Full category of error types used in KAGAS. Middle column shows acceptance rates by each error type
on human evaluation along with explanations. Rightmost column shows examples of each error types. Others are
classified as UNK.

extending ERRANT onto other languages, neces-
sary changes about the error types were made such
as discarding unmatched error types by ERRANT
and adding language-specific error types.11.

4.2 Alignment Strategy

Before classifying error types, we need to find
where the edits are from parallel text. We first con-
duct sentence-level alignment to define a "single
edit". We use Damerau-Levenshtein distance (Fe-
lice et al., 2016) by the edit extraction repository12

11VERB:SVA was discarded and DIACR was added for
Czech (Náplava et al., 2022) In a similar way, KAGAS made
necessary changes on error types regarding the linguistic fea-
ture of Korean, such as discarding VERB:SVA and adding
WS.

12https://github.com/chrisjbryant/
edit-extraction

to get edit pairs. Note that we apply different align-
ment strategy from ERRANT on the scope of a "sin-
gle" edit. We use Korean-specific linguistic cost,13

so that word pairs with lower POS cost and lower
lemma cost are more likely to be aligned together.
Also, we use custom merging rules to merge single
word-level edits into WO and WS. Therefore, the
number of total edits and average token length on
edits, and the output M2 file made from KAGAS
differs from that of ERRANT, since an M2 file con-
sists of edit alignment and error type (Fig. 2). This
would result in different M2 scores when applied
to model output evaluation.

13Kkma POS tagger, Korean lemmatizer

https://github.com/chrisjbryant/edit-extraction
https://github.com/chrisjbryant/edit-extraction

4.3 Error types for Korean

We describe how we consider the unique linguis-
tic characteristics of Korean (Appendix B.1), and
define 14 error types (Table 3).

Classifying error types in morpheme-level As
Korean is an agglutinative language, difference
between original and corrected word is naturally
defined in morpheme-level. For example, 학교
에 (’to school’) in Table 2 is divided into two
parts,학교(’school’) +에(’to’), based on its roles
in a word. If this word is corrected to 집에(’to
home’), we should treat this edit as NOUN (학교
-> 집), and if this word is corrected to 학교에서
(’at school’), we should classify this edit as PART
(Particle, since -서 is added). We need to break
down original and corrected word-level edits into
morphemes and only look at morpheme-level differ-
ences between the two when classifying error types.
When conducting morpheme-level alignment, we
utilize morpheme-level Levenshtein distance for
Korean.14 Also, the POS tags of Korean are based
on morphemes and not words, meaning that there
can be multiple POS tags for one word. Apart from
POS tagging, KAGAS also considers the compo-
sition of edits (e.g. SHORT). Please refer to Ap-
pendix B.4 for detailed examples.

No PREP, but PART In Korean, morpheme
(not word) align with the meaning. Therefore, "
학교에"(To school)->"학교에"(To-school) is WS,
and "혁고에"(To-sceol)->"학교에"(To-school) is
SPELL, which is different. In similar vein, There
is no PREP (Positioning. "to" before "school") in
Korean. They rather view them as postpositional
particle (Positioning "-에" after "학교")

On the motivation of selecting 14 Error Types
According to previous work that categorizes Ko-
rean grammatical error by frequency (Shin, 2007),
Korean error types are divided by (1) Sound, (2)
Format, (3) Spacing, and (4) The rest, meaning
that orthographical errors were highly frequent in
Korean error types. Therefore, we designed error
types to focus on capturing frequent orthographi-
cal errors such as WS, SPELL, along with syntax
and morphological errors such as WO and SHORT.
There are 9 most important categories of POS for
Korean (noun, pronoun, numeral, verb, adjective,
postposition, pre-noun, adverbs, interjection), and
a single word is divided into substantives (mostly

14https://github.com/lovit/soynlp/blob/master/
soynlp/hangle/_distance.py

by nouns) and inflectional words.15 Most inflec-
tional words are irregular and prone to change
in format, and detecting those are also important.
Therefore, we added 6 error types that can cover
the 9 types of POS for Korean except for the nu-
meral part16 (noun&pronoun to NOUN, verb to
VERB, adjective to ADJ, postposition to PART,
pre-noun&adverb to MOD, interjection to PUNCT)
and 2 error types for inflectional words (CONJ,
END (=suffix)), which can be classified by the POS
tagger. The result of 14 error types, motivated by
both Korean linguistic characteristic information
in terms of linguistic typology and orthographical
guidelines, contain all the crucial, frequent error
types.

About INS/DEL edits. Since Korean is a
discourse-oriented language, one can omit the sub-
ject or the object in a sentence depending on the
previous context. These cases are classified as
INS/DEL edits, which are grammatically correct.
There are also cases of INS/DEL that edits unnec-
essary modifiers, which is also non-grammatical
edits but rather variations to sentences. Previous
works that applied ERRANT onto other languages
also discard INS/DEL edits or treat them in a sim-
ilar manner to our work. Works on Hindi (Son-
awane et al., 2020) and Russian (Katinskaia et al.,
2022) only classifies R: (Replacement). For Arabic
(Belkebir and Habash, 2021), Insertion and Dele-
tion are not classified further other than token-level
and word-level INS/DEL. We believe that some
INS/DEL edits contain meaningful grammatical
errors. However, following previous reasons and
given our situation that we unfortunately don’t have
enough resources to conduct human evaluation of
the subgroups of INS/DEL, we believe that not
dividing INS/DEL any further would have more
gains than losses regarding the reliability of KA-
GAS. DEL/INS examples are at Appendix B.3.1,
and more details about selecting the granularity of
error types are at Appendix Section B.6.

Priority between Error Types Due to the na-
ture of Korean language, multiple error types can
be classified for a single edit. However, we de-
cided to output a single representative error type
for each edit (Appendix B.5) by defining the pri-
ority between them in order to make a determinis-

15https://www.dickgrune.com/NatLang/Korean/Lee_
Chul_Young,Korean_Grammar_Textbook,indexed.pdf

16Due to lack of available data for evaluation, they are left
as unclassified.

https://github.com/lovit/soynlp/blob/master/soynlp/hangle/_distance.py
https://github.com/lovit/soynlp/blob/master/soynlp/hangle/_distance.py
https://www.dickgrune.com/NatLang/Korean/Lee_Chul_Young,Korean_Grammar_Textbook,indexed.pdf
https://www.dickgrune.com/NatLang/Korean/Lee_Chul_Young,Korean_Grammar_Textbook,indexed.pdf

Dataset Coverage Overall acceptance rate

Total Evaluator 1 Evaluator 2 Evaluator 3

Kor-Learner 81.56% 87.34% ± 5.49%P 84.32% ± 10.70%P 87.81% ± 8.26%P 89.88% ± 7.44%P
Kor-Native 90.92% 93.93% ± 2.18%P 92.92% ± 4.14%P 93.99% ± 2.82%P 94.87% ± 3.60%P
Kor-Lang8 82.52% 87.06% ± 4.67%P 84.72% ± 8.88%P 86.98% ± 7.02%P 89.48% ± 6.97%P

Table 4: The coverage and the overall acceptance rate of KAGAS, which is a weighted sum of individual acceptance
rates by error types on real dataset distributions.

Correlation (kappa) scores Value Reliability

Fleiss’ 0.4386 moderate
Krippendorff’ 0.4392 moderate

Cohen’s
(pairwise)

Ann.1&2 0.5976 moderate
Ann.1&3 0.4426 moderate
Ann.2&3 0.3566 fair
Average 0.4656 moderate

Table 5: Inter-annotator agreement on 3 different cor-
relation metrics between 3 annotators. Note that Cohen
suggested the kappa result be interpreted as follows: <0
indicating no agreement, <.2 none to slight, <.4 as fair,
<.6 as moderate, <.8 as substantial, and <1 as perfect
agreement. The result suggest moderate agreement.

tic, reliable system with clear evidence(Appendix
C.2). Detailed steps are as follows: (1) We first
classify edits that won’t overlap with one another
(INS/DEL/WS/WO/PUNCT) according to the cur-
rent error type definition. (2) After that, we priori-
tized classifying frequent formal and orthographi-
cal errors such as SPELL and SHORT than the rest,
since those errors are highly frequent in Korean
Grammar. (3) When there are single POS types for
an edit, we return the error types according to the
POS. (4) When there were multiple POS types per
an edit, we first check whether the edit was CONJ
(a combination of VERB+ENDING or ADJEC-
TIVE+ENDING). Others are left as unclassified.
We detect INS and DEL directly by the outputs
of sentence-level alignment. We merge the edits
for WS and WO based on the syntactical appear-
ance of the edits. For SPELL, we use a Korean
spellchecker dictionary.17 We utilize the Korean
POS tagger (Appendix C.1) to classify other POS-
related error types.

4.4 Evaluation of the Annotation System

We evaluate our system by 3 Korean GEC experts
majoring in Korean linguistics (Table 4). First, we
evaluate the acceptance rate of each error type by
randomly sampling 26 parallel sentences with a
single edit for each error type from our datasets.

17https://github.com/spellcheck-ko/
hunspell-dict-ko

One half (13 sentences) is written by native Korean
speakers, and the other is written by KFL learn-
ers. In total, there are 364 parallel sentences in a
random order. Each evaluator evaluated “good” or
“bad” for each parallel sentences. The acceptance
rate is the rate of “good” responses out of “good”
and “bad” responses18. The overall acceptance rate
is the sum of the acceptance rate of each error type
weighted by the proportion of the error type in each
dataset. Therefore, it depends on the distribution of
error types in a dataset. By looking at the overall ac-
ceptance rate (Table 4), we can estimate that about
90% of the classified edits are evaluated as good for
KAGAS on real dataset distributions. The coverage
in a dataset is the rate of edits which is not identi-
fied as UNK (Unclassified). At Table 5, we can see
that the inter-annotator agreements are moderate,
meaning that the evaluation results are consistent
between annotators to be reliable enough. It is also
meaningful to note that, KAGAS has a very high
human acceptance rate (>96.15%) for frequently
observed error types on our dataset, such as WO,
SPELL, PUNCT, and PART (PARTICLE). High
acceptance rate for PART is especially meaningful
since PART plays an important role in representing
grammatical case (-격) in Korean. Detailed analy-
sis including the evaluation interface is at Appendix
C.3.1.

4.5 Contributions of KAGAS

To summarize, KAGAS is different from previous
work such as (1) integration of morpheme-level
POS tags, (2) using morpheme-level alignment
strategy, and (3) Defining Korean-specific 14 er-
ror types. Following these reasons, we believe that
KAGAS capture a more diverse and accurate set of
Korean error types than a simple adaptation from
automatic error type systems such as Choshen and
Abend (2018) or ERRANT.

https://github.com/spellcheck-ko/hunspell-dict-ko
https://github.com/spellcheck-ko/hunspell-dict-ko

Kor-Learner Kor-Native Kor-Lang8 Kor-Union
Gen.
timeGLEU

M2

GLEU
M2

GLEU
M2

GLEU
M2

Pre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5

Self-Scores 25.54 1 0 0 25.71 1 0 0 20.01 1 0 0 21.66 1 0 0
Hanspell 30.36 29.45 5.33 15.46 57.08 81.93 47.36 71.50 22.94 29.18 8.74 19.88 28.82 37.34 11.58 25.85 189.69
KoBART 45.06 43.35 24.54 37.58 67.24 75.34 55.95 70.45 28.48 37.56 11.62 25.93 33.70 44.75 14.64 31.70 38.25

KoBART +
Kor-Union

42.66 53.51 21.18 41.00 59.71 85.47 47.38 73.63 28.65 37.46 12.00 26.78 37.51

Table 6: Full experiment statistics on the test set. KoBART outputs are averaged from outputs of 3 different seeds.
Generation time (sentence/second) is measured by dividing the total number of sentences by total amount of
generation time taken. Accuracies on the test set is reported with model checkpoints that has the highest GLEU
validation accuracy.

5 Experiments
We conduct experiments to build an effective model
to encourage future research on Korean GEC mod-
els. We report test accuracy using the model with
the best validation GLEU score. Detailed exper-
iment settings to reproduce our results appear in
Appendix D.

5.1 Evaluation Metrics

We evaluate our model using M2 scorer and GLEU
(Section 2). Note that we can obtain M2 scores as
well as GLEU scores by making an M2 file by KA-
GAS. We also report self-scores (self-GLEU and
self-M2, obtained by treating original text as sys-
tem outputs to each evaluation system) to compare
the characteristics of the dataset itself. Higher self-
scores would mean that corrected text is similar to
the original text.

5.2 Baseline GEC system, Hanspell

Our primary aim is to build a first strong baseline
model on Korean GEC. Therefore, we compare our
methods with a commercial, well-known Korean
GEC statistical system called Hanspell.19 (Note
that Hanspell is a completely different system from
Hunspell.20 a spellchecker) It is developed by the
Pusan University since 1992 and it widely used in
Korea since it is free and easily accessible through
the web.21

5.3 Dataset split

We split datasets by the train_test_val_split func-
tion from sklearn.22 The train, test, valid ratio is
set to 70%, 15%, and 15% on seed 0. Then, we

18We measure the 95% confidence interval by each error
types with n=26(#samples per error types) * 3(#evaluators)
for Table 3, and report the weighted sum of those on Table 4.

19https://github.com/9beach/hanspell
20https://github.com/hunspell/hunspell
21https://speller.cs.pusan.ac.kr/
22https://scikit-learn.org/stable/

aggregate all three datasets to make Kor-Union. 23

5.4 Model Training

We use the HuggingFace24 implementation of
BART by loading the weights from the pre-trained
Korean BART (KoBART). We train models with
multiple scenarios: (1) fine-tuning KoBART with
3 individual datasets, and (2) fine-tuning with Kor-
Union and additionally fine-tuning on top of it with
3 individual data. We run each model with three
different seeds and report the average score. For
(1), we use a learning rate of 3e-5 for 10 epochs
with a batch size of 64 for all datasets on a TESLA
V100 13GB GPU. Other hyperparameters are the
same as KoBART configurations. For (2), we use a
learning rate of 1e-5.

5.5 Tokenization

We utilize the character BPE (Sennrich et al., 2016)
tokenizer from HuggingFace tokenizers library, as
KoBART used. Due to the limitations of the tok-
enizer, the encoded then decoded version of the
original raw text automatically removes spaces be-
tween a word and punctuation (Appendix D.2).
Therefore, naive evaluation of the generated output
(decoded by the tokenizer) with the M2 file made
by raw text output is not aligned well, resulting
in bad accuracy. Since we thought measuring the
performance of the model has higher priority than
measuring the performance of the tokenizer, we
use the decoded version of text to train and make
M2 files for evaluation.

6 Results and Discussion
Effectiveness of Neural models As we can see
in Table 6, the model trained with our dataset
outperform the current commercial GEC system
(Hanspell) on all datasets. It is notable in that

23For fair evaluation, all 3 datasets are evenly distributed
for each train, test, and valid split of Kor-Union.

24https://huggingface.co/transformers

https://github.com/9beach/hanspell
https://github.com/hunspell/hunspell
https://speller.cs.pusan.ac.kr/
https://scikit-learn.org/stable/
https://huggingface.co/transformers

FULL STD INS DEL WS WO SPELL PUN. SHO. VERB ADJ NOUN PART END MOD CONJ UNK

GLEU Hanspell 28.82 9.19 21.89 13.57 46.91 7.51 31.73 16.81 31.06 19.94 18.31 19.67 17.14 19.17 17.41 19.79 21.15
> 20 KoBART 33.70 6.02 23.67 18.22 34.83 13.76 36.10 20.29 33.42 27.96 29.27 25.09 27.15 27.72 23.68 25.95 26.44

Prec. Hanspell 37.34 12.22 37.49 33.51 71.98 25.00 48.21 30.61 46.70 30.32 28.42 29.94 24.37 27.12 31.41 32.10 34.07
> 40 KoBART 44.75 6.78 40.58 45.64 63.26 37.89 52.16 42.35 58.52 46.45 49.16 43.76 49.35 47.51 46.67 41.30 42.69

Recall Hanspell 11.58 9.00 10.10 7.40 39.30 5.26 21.25 6.14 15.48 6.62 6.12 8.14 5.01 5.64 7.08 8.60 9.69
> 10 KoBART 14.64 4.09 9.47 12.05 21.48 9.04 22.54 10.06 19.61 13.29 13.92 12.46 14.30 13.23 12.70 12.34 12.68

F0.5 Hanspell 25.85 12.58 24.31 19.64 61.72 14.29 38.46 17.03 33.28 17.67 16.43 19.50 13.75 15.40 18.61 20.76 22.66
> 30 KoBART 31.70 6.46 24.47 29.28 45.48 23.11 41.30 25.78 41.84 30.98 32.61 29.11 33.10 31.28 30.38 28.09 28.97

Table 7: GLEU and M2 scores on the generation output on the test set of Hanspell and KoBART on Kor-Union.
The scores are divided by all 14 + UNK error types. For convenience, scores higher than a certain threshold are
highlighted. PUN. and SHO. is for PUNCT and SHORT, respectively. The standard deviation(STD) of Hanspell is
higher than that of KoBART, meaning that scores by KoBART are evenly distributed for all error types, while
scores by Hanspell are biased toward WS and SPELL.

Hanspell is currently known as the best perform-
ing system open-source system for correcting er-
roneous Korean sentences. The result implies that
our dataset helps to build a better GEC system, and
our that our model can serve as a reasonable base-
line that shows the effectiveness of neural models
against previous rule-based systems on GEC. More-
over, the generation speed of our neural models
(KoBART) is about five times faster than Hanspell,
showing the efficiency as well as performance.25

Analysis by Error Types Here, we demonstrate
the usefulness of KAGAS, which enables us to
conduct a detailed post-analysis of model output
by measuring model performance on individual
error types. Table 7 shows score distributions on
individual error types for Hanspell and KoBART
on Kor-Union. (Full scores are at Appendix D.4).
Compared with Hanspell, KoBART trained with
our dataset generally perform better regardless of
error types. In contrast, Hanspell’s performance is
very biased towards SPELL and WS.

Kor-Native Note that the performance of Kor-
Native is much higher than the other datasets. The
error type distribution (Figure 1) for Kor-Native
aligns with Shin et al. (2015) that more than half
of the dataset is on WS for native Korean speakers,
which is different from learner datasets which has
a more diverse set of error types. Therefore, it is
easier for the model to train on Kor-Native than on
other datasets.

7 Conclusion
In this work, we (1) construct three parallel datasets
of grammatically incorrect and corrected Korean
sentence pairs for training Korean GEC systems:

25Note that we used the hanspell-cli github wrapper and not
the browser to compare inference speed, for fair comparison.
https://github.com/9beach/hanspell

Kor-Lang8, Kor-Native, and Kor-Learner. Our
datasets are complementary representing grammat-
ical errors that generated by both native Korean
speakers and KFL learners. (2) to train and eval-
uate models with these new datasets, we develop
KAGAS, which considers the linguistic character-
istic of Korean and automatically aligns and an-
notates edits between sentence pairs. (3) We show
our experimental results based on a pre-trained Ko-
BART model with fine-tuning on our datasets and
compare them with a baseline system, Hanspell.
We expect that our datasets, evaluation toolkit, and
models will foster active future research on Korean
GEC as well as a wide range of Korean NLP tasks.
Future work includes on further refining our pro-
posed method, KAGAS, by extending the coverage
and making more accurate error type classification.

https://github.com/9beach/hanspell

Limitations
Our automatic error type system, KAGAS, has
room for improvements. Although we got high
human acceptance rate for the error type classi-
fication results of KAGAS, Our coverage of error
types is about 80% to 90% (Table 4). Currently, our
system rely on the Kkma POS tagger for Korean.
We believe that the improvement of a POS tagger
will enable KAGAS to define a more detailed error
type classification with high coverage and relia-
bility. Also, there could be other ways (or more
efficient ways) to define and classify Korean gram-
matical edits. However, we would like KAGAS to
be viewed as the first step towards the effort of
making an automatic annotation tool for Korean
GEC, which, though not perfect, have meaningful
contributions to the field in its current form.

Future Directions. Currently, the 14 error types
of KAGAS is focused to be as specifc as possi-
ble, while respecting both statistical characteristics
of Korean language and incorporation into a reli-
able, deterministic system with high agreement of
human evaluation. However, definment of a more
richer error type classfication system derived from
KAGAS such as differentiating between the typo-
graphical and phonetic errors would be an impor-
tant future direction for our research, as both are
defined as SPELL errors on our current system. It
would require solving additional challenges of ac-
curately disambiguating a writer’s intention behind
errors on a grammatical aspect. Another possible
future direction would be applying data augmenta-
tion techniques on our datasets to boost the size of
the training examples and obtain evaluation metric
accuracy gains.

Ethics Statement
We have conducted an IRB for KAGAS human
evaluation.26

Acknowledgement
We would like to thank all the LKLab lab mates,
and Prof. Jungyeul Park for helpful discussions.
We would also like to thank Geunhoo Kim, Jaeyun
Kim, and from Sumin Lim for helping the dataset
collection process and making the primary version
of this paper. Lastly, I would like to thank Jinwoo
Kim for helping me write a better rebuttal, and all
the anonymous reviewers who really helped the
most to make the current version of the paper.

26Approval number: KH2021-020

This work was partly supported by Institute of
Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2022-0-00184, Develop-
ment and Study of AI Technologies to Inexpen-
sively Conform to Evolving Policy on Ethics, 70%;
No.2021-0-02068, Artificial Intelligence Innova-
tion Hub, 30%).

References
Riadh Belkebir and Nizar Habash. 2021. Automatic

error type annotation for Arabic. In Proceedings
of the 25th Conference on Computational Natural
Language Learning, pages 596–606, Online. Asso-
ciation for Computational Linguistics.

Emily M Bender. 2011. On achieving and evaluating
language-independence in nlp. Linguistic Issues in
Language Technology, 6(3):1–26.

Adriane Boyd. 2018. Using Wikipedia edits in low
resource grammatical error correction. In Proceed-
ings of the 2018 EMNLP Workshop W-NUT: The
4th Workshop on Noisy User-generated Text, pages
79–84, Brussels, Belgium. Association for Compu-
tational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The bea-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52–75, Florence, Italy. Association for Com-
putational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 793–805, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Leshem Choshen and Omri Abend. 2018. Automatic
metric validation for grammatical error correction.
CoRR, abs/1804.11225.

Bernard Comrie. 1989. Language universals and lin-
guistic typology: Syntax and morphology. Univer-
sity of Chicago press.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Com-
putational Linguistics.

Markus Dickinson, Ross Israel, and Sun-Hee Lee.
2011. Developing methodology for Korean particle

https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
http://arxiv.org/abs/1804.11225
http://arxiv.org/abs/1804.11225
https://www.aclweb.org/anthology/N12-1067
https://www.aclweb.org/anthology/N12-1067
https://www.aclweb.org/anthology/W11-1410

error detection. In Proceedings of the Sixth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 81–86, Portland, Oregon.
Association for Computational Linguistics.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in ESL
sentences using linguistically enhanced alignments.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 825–835, Osaka, Japan. The
COLING 2016 Organizing Committee.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2014. The wiked error corpus: A corpus of correc-
tive wikipedia edits and its application to grammat-
ical error correction. In International Conference
on Natural Language Processing, pages 478–490.
Springer.

Adam Christian Haupt, Jonathan Alt, and Samuel But-
trey. 2017. Identifying students at risk in academics:
Analysis of korean language academic attrition at
the defense language institute foreign language cen-
ter. Journal of Defense Analytics and Logistics.

Ross Israel, Markus Dickinson, and Sun-Hee Lee.
2013. Detecting and correcting learner Korean par-
ticle omission errors. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language
Processing, pages 1419–1427, Nagoya, Japan. Asian
Federation of Natural Language Processing.

Anisia Katinskaia, Maria Lebedeva, Jue Hou, and Ro-
man Yangarber. 2022. Semi-automatically anno-
tated learner corpus for Russian. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 832–839, Marseille, France. Eu-
ropean Language Resources Association.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correction
using a pretrained encoder-decoder model. In Pro-
ceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 827–832,
Suzhou, China. Association for Computational Lin-
guistics.

Gyeongyeol Kim. 2020. Foreign students’ korean writ-
ing errors - studying methods of language. The Jour-
nal of Language and Literature, 82:363–389.

Aomi Koyama, Tomoshige Kiyuna, Kenji Kobayashi,
Mio Arai, and Mamoru Komachi. 2020. Construc-
tion of an evaluation corpus for grammatical error
correction for learners of Japanese as a second lan-
guage. In Proceedings of The 12th Language Re-
sources and Evaluation Conference, pages 204–211,
Marseille, France. European Language Resources
Association.

Inhye Lee. 2018. Effects of contact with korean popu-
lar culture on kfl learners’ motivation. The Korean
Language in America, 22(1):25–45.

Kwankyu Lee. 2014. Hangeul Orthography Impact As-
sessment. 11-1371028-000540-01. KCI.

Minwoo Lee. 2020. An analysis of korean learners’ er-
rors by proficiency: Focus on statistical analysis us-
ing the multinomial logistic regression model. Jour-
nal of Korean Language Education, 31(2):143–169.

Myunghoon Lee, Hyeonho Shin, Dabin Lee, and Sung-
Pil Choi. 2021. Korean grammatical error correction
based on transformer with copying mechanisms and
grammatical noise implantation methods. Sensors.

Sun-Hee Lee, Markus Dickinson, and Ross Israel.
2012. Developing learner corpus annotation for Ko-
rean particle errors. In Proceedings of the Sixth Lin-
guistic Annotation Workshop, pages 129–133, Jeju,
Republic of Korea. Association for Computational
Linguistics.

Sun-Hee Lee and Jae-young Song. 2012. Annotating
particle realization and ellipsis in korean. In Pro-
ceedings of the Sixth Linguistic Annotation Work-
shop, pages 175–183.

Vladimir I. Levenshtein. 1965. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet physics. Doklady, 10:707–710.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Chen Li, Junpei Zhou, Zuyi Bao, Hengyou Liu, Guang-
wei Xu, and Linlin Li. 2018. A hybrid system for
Chinese grammatical error diagnosis and correction.
In Proceedings of the 5th Workshop on Natural Lan-
guage Processing Techniques for Educational Appli-
cations, pages 60–69, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3291–3301, Minneapolis, Minnesota. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/W11-1410
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/I13-1199
https://www.aclweb.org/anthology/I13-1199
https://aclanthology.org/2022.lrec-1.88
https://aclanthology.org/2022.lrec-1.88
https://www.aclweb.org/anthology/2020.aacl-main.83
https://www.aclweb.org/anthology/2020.aacl-main.83
https://www.aclweb.org/anthology/2020.lrec-1.26
https://www.aclweb.org/anthology/2020.lrec-1.26
https://www.aclweb.org/anthology/2020.lrec-1.26
https://www.aclweb.org/anthology/2020.lrec-1.26
https://www.aclweb.org/anthology/W12-3617
https://www.aclweb.org/anthology/W12-3617
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/W18-3708
https://doi.org/10.18653/v1/W18-3708
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.18653/v1/N19-1333

Jin Hong Min, Seong Jun Jung, Se Hee Jung, Seongmin
Yang, Jun Sang Cho, and Sung Hwan Kim. 2020.
Grammatical error correction models for korean lan-
guage via pre-trained denoising. Quantitative Bio-
Science, pages 17–24.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In Pro-
ceedings of 5th International Joint Conference on
Natural Language Processing, pages 147–155.

Yunju Nam, Jewook Yoo, and Upyong Hong. 2018.
The influence of constituents’ semantic properties
on the word order preference in korean sentence pro-
duction. Language and Information, 22(1).

Jakub Náplava, Milan Straka, Jana Straková, and
Alexandr Rosen. 2022. Czech grammar error cor-
rection with a large and diverse corpus. Transac-
tions of the Association for Computational Linguis-
tics, 10:452–467.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammat-
ical error correction metrics. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 588–593, Beijing,
China. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Chanjun Park, Sungjin Park, and Heuiseok Lim. 2020.
Self-supervised korean spelling correction via de-
noising transformer. 7th International Conference
on Information, System, and Convergence Applica-
tions.

Gaoqi Rao, Qi Gong, Baolin Zhang, and Endong Xun.
2018. Overview of NLPTEA-2018 share task Chi-
nese grammatical error diagnosis. In Proceedings
of the 5th Workshop on Natural Language Process-
ing Techniques for Educational Applications, pages
42–51, Melbourne, Australia. Association for Com-
putational Linguistics.

Alla Rozovskaya and Dan Roth. 2019. Grammar error
correction in morphologically rich languages: The
case of Russian. Transactions of the Association for
Computational Linguistics, 7:1–17.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Hocheol Shin, Buyeon Kim, and Kyubum Lee. 2015.
A study on the hangeul orthography error status.
Grammar Education, 23:63–94.

Seoin Shin. 2007. Corpus-based study of word order
variations in korean. In Proceedings of the Cor-
pus Linguistics Conference (CL2007), volume 2730.
Citeseer.

Ho-Min Sohn. 2001. The Korean language. Cam-
bridge University Press.

Ankur Sonawane, Sujeet Kumar Vishwakarma, Bha-
vana Srivastava, and Anil Kumar Singh. 2020. Gen-
erating inflectional errors for grammatical error cor-
rection in Hindi. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing: Student Research Workshop, pages 165–
171, Suzhou, China. Association for Computational
Linguistics.

Jae Jung Song. 2006. The Korean language: Structure,
use and context. Routledge.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kübler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(spmrl) what, how and whither. In Proceedings of
the NAACL HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages
1–12.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
arXiv preprint arXiv:1704.08352.

Shih-Hung Wu, Jun-Wei Wang, Liang-Pu Chen, and
Ping-Che Yang. 2018. CYUT-III team Chi-
nese grammatical error diagnosis system report in
NLPTEA-2018 CGED shared task. In Proceed-
ings of the 5th Workshop on Natural Language Pro-
cessing Techniques for Educational Applications,
pages 199–202, Melbourne, Australia. Association
for Computational Linguistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of

https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-3706
https://doi.org/10.18653/v1/W18-3706
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2020.aacl-srw.24
https://aclanthology.org/2020.aacl-srw.24
https://aclanthology.org/2020.aacl-srw.24
https://doi.org/10.18653/v1/W18-3729
https://doi.org/10.18653/v1/W18-3729
https://doi.org/10.18653/v1/W18-3729
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014

the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 156–165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Appendix for
Standardizing Korean Grammatical Error Correction:

Datasets, Evaluation, and Models
A Detailed instruction of dataset pre-processing
A.1 General

In original-corrected pairs, there are cases where punctuation and words are in one word for origial-
corrected edit pairs, such as: "갔어." -> "갔어!" Since we are doing a word-level alignment, it seems
inappropirate to classify this whole edit as "PUNCT". Therefore, in order to correctly get error type
distributions per our dataset, we process all of our dataset to add spaces between punctuations ("갔어." ->
"갔어 .", "갔어!" -> "갔어 !"). After this, only punctuations can be left for alignment. Now the edit pairs
from the previous example are transformed into "."->"!", which seems very appropriate as an edit that can
be classified as "PUNCT".

A.2 Kor-Native

Collecting correct sentences. We collect grammatically correct sentences from two sources:

1. 7,481 sentences from online education materials for Korean learners published by the Center for
Teaching and Learning for Korean.27

2. 4,182 example sentences in an electronic dictionary written by NIKL.28

We have granted to apply changes to the original dataset (Additionally make grammatically wrong
sentences out of correct sentence) and redistribute these datasets, under the Korean Gong-Gong-Nuri-4
license.29 This license states that anyone can use Kor-Native for non-commercial purposes under proper
attribution of source.
Collecting transcribed sentences. We read the correct sentences using Google Text-to-Speech (TTS) to

Figure 3: Demo page that we used for Kor-Native dataset collection. Translated into english.
native Korean speakers and let them dictate the sentences they hear on crowd-sourcing platforms. The
demo page for the platform that we used is shown above.

We designed our method to deliver the correct sentences to the audience in oral because a written form
may interfere the writing behavior of the audience. As a result, we collected 51,672 transcribed sentences.

27https://kcorpus.korean.go.kr/service/goErrorAnnotationSearch.do
28These sentences come from the National Institute of Korean Language which allows use of this corpus for research purposes.
29https://www.kogl.or.kr/info/license.do#04-tab

https://kcorpus.korean.go.kr/service/goErrorAnnotationSearch.do
https://www.kogl.or.kr/info/license.do#04-tab

Filtering. Not all transcribed sentences contain grammatical errors. We filtered out transcribed sentences
which do not contain a grammatical error by the following criteria:

1. If a correct sentence and its transcription are exactly same,

2. or if the differences between two sentences fall into any of the followings:

• a punctuation,
• related to a number,
• a named entity.

A punctuation is not read by TTS. A number has multiple representations, e.g., “1” in Arabic numeral
and “일” in Korean alphabet. Finally, we excluded transcribed sentences that are too short compared to
the original correct sentence.
Why do native speakers mostly make spacing errors, while there are almost no errors on the learner
corpus? Unlike English which generally requires a space between words, Korean often combine words
without a space, depending on the context. The word spacing rule is very irregular with lots of exceptions.
Consider the example이옷은 (thiscloth) ->이옷은 (this cloth). In Korean, a sentence with incorrect word
spacing is still comprehensible to some degree, thus people often don’t strictly follow the word spacing
rules. Incorrectly spaced sentences are accepted as long as they do not crucially affect readability, making
word spacing rules even more difficult to memorize. On the other hand, Korean language learners may be
more aware of accurate spacing due to their focus on language learning, and it is also likely that learners
make other types of grammatical errors as frequent as spacing errors, which makes word spacing error
much less dominant.

A.3 Kor-Lang8

We first extract incorrect-correct Korean dataset pair from the raw Lang-8 corpus. Then, we extract
all pairs that contain Korean letters and preprocess the corpus to obtain (orignial, corrected) pairs. We
apply various post-processing techniques into original raw Lang-8 corpora. Those techniques include: We
discard pairs which:

• token length (when tokenized by kobart tokenizer) is longer than 200, since it consisted of meaning-
less repetition of words or numbers.

• contains language other than English, Korean, or punctuations, such as arabic or japanese characters.

• length of one token (splitted by space) is bigger than 20, since the sentences doesn’t make sense by
manual inspection.

• contains noisy words such as ’good’, ’or’, ’/’ inside.

• Doesn’t consist of original <-> corrected pairs.

• length of each sentence is at least longer than 2. (naive length, not tokenized length)

We also compute the ratio (rt) of the number of tokens of the post-edit to the pre-edit (nt,pre, nt,post).
Similarly, we compute the ratio (rl) of the lengths. Then, we retain the (pre-edit, post-edit) pairs sat-
isfying the following conditions and discard the others: 1) 0.25 < rt < 4, 2) 0.5 < rl < 1.25, 3)
min(nt,pre, nt,post) > 5, and 4) the length of the longest common subsequence is greater than 10 charac-
ters.

Then, we modify each sequence by deleting the traces of unneeded, additional proof marks. Therefore
we discard phrases which is inside brackets. Those indicate the subsequence SEQUENCES inside the
text such as (SEQUENCES), {SEQUENCES}, <SEQUENCES>, or [SEQUENCES]. We discard them
along WITH the brackets. In a similar context, there was multiple repetition of partiuclar tokens, such as "
안녕홍대 !!!!!! ????". so we shortened repeated patterns and make it appear only once. Those special

tokens include [’ ’, ’!’, ’;’, ’?’, ’’̃, ’>’, ’’̂, ’+’, ’ㅠ’, ’ㅜ’, ’ㅋ’]. After applying this, the original sentence is
converted into "안녕홍대 ! ?"

After this step, we filter sentences by leaving out only those whose jamo_levenshetein distance which
is dicussed in Appendix A.3.1.30 is smaller than 10. Pairs whose levenshtein distance is bigger than
this threshold is likely to contain pairs that are not grammatical edits, but rather rephrases or additional
explanations. Lastly, we retain pairs whose original and corrected pairs are unique and original and
corrected sentences are not the same (there must be at least one edit).

After this step, there are 109,560 sentence pairs in this corpus. Full details about the modifying and
filtering functions for lang8 are going to be opensourced, for reproducibility for everyone.

A.3.1 Jamo_levenshtein Distance

Levenshtein distance (Levenshtein, 1965) are computed between the pre-edit and the post-edit sentences.
We compute the distance in morpheme-level and normalize it by the sentence lengths as follows:

||LD|| = LD(spre, spost)

min(|spre|, |spost|) log20 min(|spre|, |spost|)
(1)

where spre and spost denote pre-edit and post-edit, |s| is length of sentence s, and LD(·, ·) is Levenshetein
distance, and min(·, ·) is minimum value between two arguments. In other words, the jamo_Levenshetein
Distance between pre-edit and post-edit is normalized by their sentence length of the shorter sentence,
resulting in a smaller normalization effect for longer sentence (Grundkiewicz and Junczys-Dowmunt,
2014). We use an existing implementation31 which is a function inside python library called soynlp.

A.4 Kor-Learner

The original corpus is a set of XML files with multiple tutors’ tags and corrections to the errors of Korean
learner essays.

A.4.1 Original XML format of the NIKL learner corpus
The NIKL learner corpus consists of correction edits classified with individual tags: some of them are:
(1)The position of the error(morph from-to), (2)Morpheme-level suggestions(edits) to the error(Proofread),
(3)The granularity level:whether it is replacement, insertion, deletion, and so on(ErrorPattern), (4)The
level of the error(ErrorLevel), (5)The role of the error in a sentence(ErrorArea), or (6)Whether it is a
written or spoken language. Below are examples of the original XML dataset:
Example Sentence of korean learner corpora (filetype: xml)
<s>오후 5시 반에 집에 들었어요.</s>

...
<LearnerErrorAnnotations>

<word>
<w>들었어요.</w>
<morph from="157" subsequence="1" to="162" wordStart="Start">

<Proofread pos="VV">들어오</Proofread>
<ErrorArea type="CVV" />
<ErrorPattern type="REP" />

</morph>
<morph from="157" subsequence="2" to="162" wordStart="None">

<Proofread pos="EP">았</Proofread>
</morph>
<morph from="157" subsequence="3" to="162" wordStart="None">

<Preserved>어요</Preserved>
</morph>
<morph from="157" subsequence="4" to="162" wordStart="None">

<Preserved>.</Preserved>
</morph>

</word>
</LearnerErrorAnnotations>

The details of how we interpret and merge edits are explained at Appendix A.4.3.

A.4.2 Manual refinement step

As explained at Section 3.1, some XML files had empty edits, missing tags, and inconsistent edit correction
tags depending on annotators. Of all the possible tags (Appendix A.4.1), it was common that not all
ErrorArea, ErrorLevel, and ErrorPattern tags were present for each edit. Therefore we conduct a refinement
step to ensure the quality of the dataset. We process the NIKL learner corpus by the following steps: First,

30It is a morpheme-level levenshtein distance for Korean.
31https://github.com/lovit/soynlp/blob/503eaee28799e9a3baf01483c6fc59e0db524fa3/soynlp/hangle/

_distance.py

https://github.com/lovit/soynlp/blob/503eaee28799e9a3baf01483c6fc59e0db524fa3/soynlp/hangle/_distance.py
https://github.com/lovit/soynlp/blob/503eaee28799e9a3baf01483c6fc59e0db524fa3/soynlp/hangle/_distance.py

Merge all XML files into a single corpus. Then, we discard sentences with no or inconsistent proofread
tags by manual inspection. For example, there were datasets labeled as "DELETE" for the proofread
tags, where the place was originally meant to be the place for morpheme-level edits. We discard those
datasets. Since the grammatical aspects of handling written and spoken languages are different, we discard
datasets tagged as spoken language and leave only written language. Lastly, we validate the consistency
of the types of errors tagged by different tutors and leave out only valid annotations. After this step,
we build a corrected sentence from the original sentence and morpheme-level corrections by merging
morpheme-level syllables into Korean words (Appendix A.4.3).

A.4.3 The merging process from Korean orthography guidelines

In order to build corrected word-level sentences by the NIKL learner corpus, we need to apply Korean
orthography guidelines since the annotations are originally decomposed in morpheme-level. We explain
in detail about the rules below:

• Section 18-6: When end of stem "ㅂ" is transformed to "ㅜ", write as transformed even it’s against
the guideline.32

• Section 34: When stem ends with "ㅏ,ㅓ", using ‘-아/-어, -았-/-었-’ is harmonizing then write as it
abbreviated.33

• Section 35: When stem ends with "ㅗ,ㅜ", ‘-아/-어, -았-/-었-’ is harmonizing and abbreviated to
"ㅘ/ㅝ,왔,웠", then write as it abbreviated.34

• Section 36: When "-어" is next to "ㅣ" and abbreviated to "ㅕ" then write as it abbreviated.35

We implemented the above Korean orthography guidelines and applied it to every sentence tokens gathered.
These method provided sufficient coverage to handle all morpheme-level corrections of corpora. We will
open-source the code. But there were exceptions and uncovered cases, so in case you want to build another
corpora or utilize the code to merge morphemes into words, you may want to implement more Korean
orthography guidelines on our code. We now take an example and show how we actually merged the
morphemes. For example, the above XML file (Appendix A.4.1) contains correction annotations about a
morphic change from "들었어요."(meaning : came back, mis-spelled) to "들어오"+"았"+"어요". In this
case, stem "ㅗ" in "들어오" must be harmonized with ending "았" (by Korean orthography guideline,
section 35). So "들어오"+"았" must be abbreviated to "들어왔". To handle these abbreviations, We
followed these step:

• join all annotations.(i.e. "들어오"+"았"+"어요"+"." = "들어오았어요."

• decompose all tokens to syllables (i.e. "들" is decomposed to [ㄷ,ㅡ,ㄹ] and so on)

• if syllable sequence applicable to abbreviation rules, then merge.(i.e. decomposed syllable sequence
(ㅇ,ㅗ,None),(ㅇ,ㅏ,ㅆ) comform with Section 35.)

• repeat until nothing to apply

B KAGAS Development Details
B.1 Brief introduction to Korean language

The current orthographical practice of Korean writing system, Hangul (한글), was established by the
Korean Ministry of Education in 1988. One prominent feature of the practice is morphophonemic. This
indicates that a symbol is the binding of letters consisting of morpheme-based syllables. For instance,
though자연어 in ‘natural language’ is pronounced as자여너 [tCa.j2.n2], it should be written as자연어

32https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a238
33https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a254
34https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a255
35https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a256

https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a238
https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a254
https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a255
https://kornorms.korean.go.kr/regltn/regltnView.do?regltn_code=0001®ltn_no=178#a256

Human annotations KAGAS

Schema
Different by datasets.
Cannot compare

Provides a
unified schema

Decisions
Random
Differs by annotators

Deterministic
More trustworthy

Time/price cost
Experts needed.
Expensive

No cost, can
instantly get output

Table B.1: Benefits of KAGAS over human annotations.

since each of자연 ‘natural’, and어 ‘language’ is a morpheme with one or two syllables. Words, or Eojeol
(어절) are formed by both content and functional morphemes in general. They are basic segments for
word spacing in Korean. The rules for the word spacing are also described in the orthography guidelines,
however, they are often regarded as complex ones for native Korean speakers (Lee, 2014).

In the view of linguistic typology, as mentioned, Korean is an agglutinative language in that each
morpheme encodes a single feature. This turns out that the language has rich morphology such as various
particles and complex conjugation forms. The example in (1) shows that each particles attached to a noun
indicates a case marker such as nominative, accusative and the others. Furthermore, the affixes attached to
a verb stem serve as functional morphemes pertaining to tense, aspect and mood. Another distinction of
the language is that pro-drop or zero anaphora is abundant, which is common in morphologically rich
languages (Tsarfaty et al., 2010). Particle omission is also frequent in colloquial speech (Lee and Song,
2012). These linguistic characterisitcs are different from the ones of fusional languages such as English
and German where a concatenated morpheme has multiple features in usual (Comrie, 1989; Vania and
Lopez, 2017).

(1) 수지-가
Suzy-NOM

한나-에게
Hannah-DAT

우체국-에서
post.office-LOC

편지-를
letter-ACC

보내-는
send-PRS

중-이-라고
currently.doing-ADJ-QUOT

말-했-습-니-다
say-PST-POL-IND-DECL

‘Suzy said that she was sending a letter to Hannah at the post office.’

The word order of Korean is relatively free. While the canonical word order of the language is Subject-
Object-Verb (SOV), it is possible to change the positions of the words in a sentence. However, corpus and
psycholinguistic studies have reported that the preferred order exists for adverbs with the conditions related
to the meaning of the verb (Shin, 2007) and the specific types of the adverbs such as the time and place
ones (Nam et al., 2018). Nevertheless, Korean speakers allow various word orders when comprehending
and producing sentences in general.

B.2 Benefits of using KAGAS

Table B.1 shows the benefits of using an automatic system over human annotation. Making a fully human
annotated dataset resource for Grammatical Error Correction is quite difficult and costly, and an automated
version of it (KAGAS) could be a great alternative, and could even overcome many disadvantages of
human annotation. Therefore, we emphasize here again the advantages of automatic error type correction
system.

• KAGAS provides a unified schema for all Korean parallel datasets. In contrast, error types by human
annotations are different by datasets, and thus hard to compare.

• KAGAS uses a deterministic, trustworthy decision on assigning error types, where it could be random
or different by annotators for human annotations.

• KAGAS can be applied with no cost, and instantly get output while it takes a lot of time, money, and
effort to hire experts for annotation and validate them. This particularly becomes a great advantage
for datasets used for training neural models where the dataset size is often too large to conduct
high-quality human annotation, and on other languages than English where experts are very expensive
and difficult to hire.

B.3 More examples of Korean Error Types

B.3.1 INS & DEL

In Korean, one can omit the subject or the object in a sentence depending on the previous context, since it
is a discourse-oriented language. In these cases, sentence with DEL and INS edits and also without DEL
and INS edits are both grammatically correct. There were also cases of INS or DEL which are edits of
unnecessary modifiers. This is also a case of non-grammatical edits but rather variations to sentences.
For this reason, we felt no need to divide error types further for INS&DEL that mostly accounts for
unnecessary, non-grammatical edits. Below are some INS & DEL examples from lang8.txt.

Line.1825 :
음악회에가는것은좋아해서 ... (Like going to musicals)
INS->“나는”음악회에가는것은좋아해서 ... (I like going to musicals)
Line. 1909 :
날마다 “이”일기에써고싶어요 (Want to write on this diary everyday)
DEL->날마다일기에...(Want to write on diary everyday)
-All sentences are grammatically correct in Korean.

B.4 Detailed examples of Alignments and assignment of error types by KAGAS

We add some examples that describe how KAGAS assigns word-level POS error types by morpheme-level
edits. Note that POS tagging is conducted by the kkma POS tagger.

• Word-level insertion

– 음악회에가는... =>나는음악회에가는 ..

– “나는” is inserted

– INSERTION

• Morpheme-level deletion

– 소풍(NNG) +을(JKO) =>소풍(NNG)

– 을(JKO) is deleted, thus labeled as PART(JKO is grouped to PART)

• Morpheme-level insertion

– 유학(NNG) =>유학(NNG) +러(NNP)

– 러(NNP) inserted, thus labeled as Noun(NNP -> PART)

• Morpheme-level substitution

– “싶습니다” => “싶어합니다”

– tokenized by POS tagger as “싶”+“습니다” => “싶”+“어”+“하”+“ㅂ니다”

– 싶(VXA) +습니다(EFN) ->싶(VXA) +어(ECD) +하(VV) +ㅂ니다(EFN)

– (EFN->ENDING) to (ECD->ENDING, VV->VERB, EFN->ENDING)

– (ENDING) -> (ENDING, VERB)

– sum((ENDING), (ENDING,VERB)) -> (VERB, ENDING)

– If we aggregate all POS included in this edit, we get (VERB, ENDING), and therefore is labeled
into “CONJ”.

Please refer to software:KAGAS/pos_granularity.py for full mapping of kkma POS tags grouped into our
error types.

B.5 On assignment of single representative Error Types instead of multiple Error Types per a
single edit

Defining error types that don’t overlap with one another in the first place would be optimal, but unfor-
tunately, defining meaningful error types for Korean that are mutually exclusive is almost infeasible.
(Appendix A.4.1: The NIKL corpus tagged morpheme-level error types in 3 levels: the position of error
types(오류위치), ErrorPattern(오류양상), and ErrorLevel(오류층위).) Similarly, we want to clarify that
the current implementation of KAGAS(software:KAGAS/scripts/align_text_korean.py#L404) has the
ability to output all candidates of error type classifications(in formal aspect (INS/DEL/SUB), the POS
of the edit, and the nature and scope of edit(SPELL/SHORT/The rest)). Currently, it is aggregated to a
single error type, in the order of pre-defined priorities. While KAGAS can be easily extended to output
multiple error types for a single edit, human evaluation and error type distribution analysis becomes much
more complicated if we evaluate all possible error types per edit. For simplicity and clarity (and to make a
deterministic reliable system), we decided to assign priorities and conduct human evaluation only on the
highest priority error types. Please note that other works that extend ERRANT onto other languages also
assign single error types to each edit (Náplava et al., 2022), (Sonawane et al., 2020), (Katinskaia et al.,
2022).

B.6 The granularity of Error Types

Our primary goal on building KAGAS was to correctly classify error types in as much coverage as
possible, while the human evaluation of KAGAS output is reliable enough. The first version of KAGAS
was made after referring to the Korean orthography guidelines and other related work, and adjusting them
into the ERRANT error types. It first contained a more diverse set of error types, with multiple error
types assigned per an edit (e.g. SUB:VERB:FINAL_ENDING, SUB:VERB:DERIVATIONAL_ENDING,
SUB:PARTICLE:OBJECTIVE, or INS:PUNCT). However, we noticed that there were 2 issues that
prevented the practical and reliable use of the first version of KAGAS, and fixing these problems led
to the current version described in the paper. First, the accuracy of kkma (POS tagger) was not good
enough to ensure good quality of error types described previously in much detail, which is something
that is beyond the scope of this work (We believe that the improvement of a POS tagger will enable
KAGAS to define a more detailed error type classification with high reliability). Second, we could not
perform reliable human evaluation with fine-grained error types. For reliable human evaluation we needed
at least 26 samples per an error type - 13 in Kor-Native and 13 in Kor-Learner + Kor-Lang8 - to conduct
a reliable human evaluation. Therefore, to ensure the quality of classification by KAGAS, error types
without sufficient samples were aggregated into higher categories of similar groups or left as unclassified
(at software:KAGAS/edit- extraction/pos_granularity.py).

C Implementation Details

C.1 Kkma POS Tagger

We use the Konlpy wrapper for Kkma Korean POS tagger,36 to tag Part-Of-Speech information in a
given sentence. We chose to use Kkma because it had the most diverse POS tags 37 among the konlpy
POS taggers. However, Kkma fail to recover to the original form of a sentence after the output of
POS tagging. Kkma outputs morpheme-level tags, and it erases whitespaces from the original input
sentence. Therefore, recovering whitespaces after processing a sentence by Kkma is necessary, along
with aggregating morpheme-level tags into word-level. We solve this issue by utilizing morpheme-level
alignment for Korean.

C.2 Defining the priorities between error types

We wanted our system to be highly reliable and clear given the current available resources. Therefore, we
prioritized classifying frequent, orthographic error types over POS classification.

After the output of the edit extraction, We use the allSplit method and merge mulitple edits as one

36https://konlpy-ko.readthedocs.io/ko/v0.4.3/
37http://kkma.snu.ac.kr/documents/index.jsp?doc=postag

https://konlpy-ko.readthedocs.io/ko/v0.4.3/
http://kkma.snu.ac.kr/documents/index.jsp?doc=postag

edit of word space and word order errors. For detection spell errors, we explained earlier that we use the
Korean spellchecker dictionary.38 Note that words that are proper noun is likely to be not included in the
Korean dictionary, so spell errors are defined in a more narrower sense than it is currently thought of. We
defined edits as spell errors only when original span wasn’t inside the korean dictionary, but after editing,
the edited word is inside the Korean dictionary. Therefore, corrections on proper nouns are treated as
correct when there are classified as NOUN errors, not SPELL errors.

There were sometimes edits that could be both classified by one or more error types. For example, and
insertion edit that added punctuation can be both classified as "INS" edits or "PUNCT" edits. In order to
avoid this ambiguouity, we set the priority between edits. The priority is as follows.

• INS & DEL > the rest

• WS > WO > SPELL > SHORT > PUNCT > the rest

We informed this to participants for human evaluation to evaluate ambiguous edits on this priority. For
Korean-specific linguistically aligned alignment, we computed similar with the English alignment system,
but we defined Korean lemma cost using the soylemma’s lemmatizer, and we defined the Korean content
pos as NNG, NNP, NNB, NNM, NR, NP, VV, VA, VXV, VXA, VCP, VCN, MDT, MDN, MAG, MAC
out of full pos tags for korean.39

C.3 Qualitative analysis on user evaluation.

C.3.1 Evaluation Interface

Figure 4 shows the evaluation demo interface that we used for human evaluation. We gave the full list of
error types and made the evaluators to mark either ’good’ or ’bad’ about the error type classification.

C.3.2 About low-performing cases

Overall, the participants evaluated error types that could easily be identified by their forms with a higher
proportion of ’good’, and error types that relates to the POS tags as ’bad’. After manual inspection of
edits that were classified as ’bad’ by the Korean experts, we found that most of them were due to the
limitations of the POS tagger. Most of the times the POS tagger fail to tag the correct POS for edit words,
especially when there is a spelling error inside a word, or it is a pronoun. This explains why acceptance
rates for POS-related error types had lower scores, for example, ADJ, NOUN, VERB, or CONJ. Also,
after the main evaluation, we additionally asked the participants to classify edits that were marked as
UNK, edits which KAGAS was unable to classify it to any error types. The participants classified most of
the UNK edits as spelling errors. Since there are a lot of inflectional forms for a word for Korean, current
dictionary-based spellchecker fail to identify all SPELL error edits. Therefore, we believe that KAGAS
will benefit from the improvement of the Korean POS tagger and spell checker.

C.3.3 About selection of sentences for evaluation

For simplicity and clarity for annotators, we selected sentences with a single edit for each error type
from our dataset for human evaluation. One concern could be that there could be a selection bias -
straightforward cases could be selected for evaluation. We would like to first clarify that our 14 error types
are entirely defined by local edits. In other words, the error type classification output of KAGAS is not
affected by adjacent words or sentence structure (POS tagging is performed word-wise, and INS/DEL
edits are not divided further). Therefore, we carefully argue that the validity of KAGAS is not affected by
the number of edits and thus sentences with one edit can sufficiently represent the entire data, since the
goal of human evaluation is to evaluate whether KAGAS correctly classifies word-level edits.

D Experimental Details
D.1 Details of Experimental Settings

We used a computational infrastructure which have 4 core CPU with 13GB memory and with one
GPU(NVIDIA Tesla V100). All reported models are run on one GPU. We use the kobart pretrained model

38https://github.com/spellcheck-ko/hunspell-dict-ko
39http://kkma.snu.ac.kr/documents/index.jsp?doc=postag

Figure 4: Demo that we used for KAGAS system evaluation. Translated into english.

and kobart tokenizer. We allocate 70% of data set to train, 15% to test, and 15% to valid data sets by
using Python scikit-learn library, sklearn.train_test_split function. GLEU(Napoles et al., 2015) scores are
evaluated by the official github repository 40, and M2 scores (Dahlmeier and Ng, 2012) are also evaluated
on the official repository.41

D.2 Tokenizer issue on punctuation space recovery

Below is an example of the encoded and decoded outputs of the tokenizer.

>>> orig_text = "이게 뭔가요 왜 안돼요 ? ."
>>> orig_tokens = tokenizer.encode(orig_text)
>>> orig_tokens
[17032, 20156, 11900, 14851, 14105, ... 17546]
>>> decoded_text = tok.decode(orig_tokens)
>>> decoded_text
'이게 뭔가요 왜 안돼요?.'
>>> orig_text == decoded_text
False

We can see that spaces between punctuations and word disappeared from the decoded text, thus making it
different from the original raw text. For this reason, we conduct the KAGAS experiments and report error

40https://github.com/cnap/gec-ranking
41https://github.com/nusnlp/m2scorer

Kor-Learner Kor-Native Kor-Lang8 Kor-Union

GLEU M2 total
time GLEU M2 total

time GLEU M2 total
time GLEU M2 total

timePre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5
Self-Scores 25.90 1 0 0 - 25.92 1 0 0 - 19.38 1 0 0 - 21.66 1 0 0 -

Hanspell 29.75 24.17 5.37 14.21 7 57.97 81.16 47.80 71.22 4 22.35 29.09 8.51 19.61 71 28.46 36.30 11.49 25.35 69

KoBART 46.94 43.95 26.35 38.76 1hr 4min 69.37 75.07 56.81 70.53 38min 28.57 37.69 12.64 26.96 3hr 39min 34.07 44.33 15.33 32.13 5hr 6min

KoBART +
Kor-Union 44.66 51.94 23.55 41.83 1hr 61.64 83.95 48.55 73.25 39min 28.51 38.53 12.72 27.40 3hr 38min - - - - -

Table D.1: We also report the evaluation results on valid sets which has the highest GLEU score. KoBART outputs
are averaged from outputs of 3 different seeds. Here, we also report the total training time for 10 epochs, in the
total time section.

Kor-Learner Kor-Native Kor-Lang8

r .50 .46 .03

p .06 .09 .92

Significant O O X

Table D.2: Correlation between error type proportions(%) with respect to GLEU scores of KoBART + individual.
The correlation is significant (p < .1) for Kor-Learner and Kor-Native.

type distributions on each datasets by raw text, but use the decoded version on evaluating model outputs.
Full error type distributions on both raw text and decoded text is described on Table D.3.
BART. We use BART-base architecture, having the number of trainable parameters are 123M. we evaluate
on the model which scores highest in GLUE scores. We first started with hyperparameters that were used to
fine-tune BART on CNN-Dailymail task.1 Among those parameters, we experimented on different dropout
rates, and on the learning rates. We use the BartForConditionalGeneration structure by the huggingface
library.42 When generating, number of beams that we used for beam search is fixed to 4.

D.3 About pre-training with wikipedia dataset.

Since GEC suffers from lack of plentiful parallel data, we also tried to pre-train our model on Wikipedia
edit pairs (Lichtarge et al., 2019) with a learning rate of 1e-05, and then fine-tune for 10 epochs on each
individual datasets. However, we found out that KoBART is already a very strong pre-trained model,
and the benefit from Wikipedia edit pair training is small. Therefore, we decided not to use the Korean
Wikipedia edit pairs on our baseline experiment.

D.4 Further analysis on model outputs.

Accuracies improve linearly with the proportion of the training dataset. Kor-Native scores notably
high on WS, while Kor-Learner scores poorly. According to Figure 1, Kor-Native has a large proportion
of WS and Kor-Learner have only a small fraction. The same trend applies for PART on Kor-Learner
datasets, compared with Kor-Lang8. Table D.2 is obtained by the indiviual error type proportion with
respect to the GLEU scores shown in Figure 5. According to Table D.2, there is a positive correlation
between the distribution of error types and the individual performance for Kor-Learner and Kor-Native.
This means that when making a GEC model, training dataset distributions should differ in relation to what
type of error types one wants to have high performance on. For example, if a model that performs well on
ADJ errors is needed, Kor-Learner dataset should be utilized, and if a model that corrects WS errors very
well is needed, the Kor-Native dataset should be used, and if one need to correct informal errors from KFL
learners, using Kor-Lang8 would be the best, while using Kor-Native would be better to correct native
speaker errors. Therefore, we believe all three datasets have their own purpose, and we provide them as
separate three datasets without unifying them.

Comparison with KoBART and KoBART + Kor-Union The results on KoBART + Kor-Union is the
results from the model fine-tuned twice, first with Kor-Union and then with the individual dataset. As we
can see in Table 6, there is an improvement in precision and F0.5 scores compared with KoBART+Kor-
Union (KoBART fine-tuned on Kor-Union and then fine-tuned on each individual dataset again) than

1https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
42https://huggingface.co/transformers/

https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md

(a) Hanspell (b) KoBART

Figure 5: Heatmap illustration of generation output on test set of (a) Hanspell and (b) KoBART error types. We
leave out WO and PUNCT due to the lack of examples in the test set. We can see that the scores of KoBART are
similar over all error types, while Hanspell scores are biased toward word spacing (WS) and spelling (SPELL).
Full values are in Appendix Table D.4.

Figure 6: Heatmap illustration of error types generated by KoBART + Union and individual dataset fine-tuning.
Note that the scoring range is different from that of Figure 7.

KoBART (fine-tuned directly on KoBART), meaning that all three datasets can help on improving the
performance of the individual datasets. Analysis for KoBART + Kor-Union on each error type distributions
shows similar trends with KoBART (Table D.4).

Additional Results Figure 6 shows the test dataset heatmap for KoBART + Kor-Union. We can see that
the trends are similar with that of KoBART. Also, Figure 7 shows the valid dataset heatmap of KoBART
compared with Hanspell. The full error type scores are described in Table D.4. It first shows the count of
occurences of the valid datasets used for generation and making heatmap illustrations. Also, it shows the

(a) Hanspell (b) KoBART

Figure 7: Heatmap illustration of generation output of valid set by (a) Hanspell and (b) KoBART error types. We
can see that the distributions are similar to those on the test set.

full output of scores by all datasets with all methodologies.

Discussion on the ability of our model to refrain from editing when no fix is necessary Another
important aspect to grammatical error correction models would be about how these tools behave in
the face of both grammatically incorrect and correct sentences. For this, we have evaluated the GEC
model fine-tuned on the Kor-Native train dataset on both the source (grammatically incorrect) and target
(grammatically correct) sentences of the 2,634 Kor-Native dev set. When we provided the model with
grammatically correct sentences as input, the model output the exact same sentences as the original input
sentence in 2184/2634 cases (82.92%). In contrast, when we provided grammatically incorrect sentences
as input, the model only preserved the 400/2634 input sentences (15.19%) and fixed the input in 84.81%
of the cases. This shows that while the model was only trained with grammatically incorrect sentences as
input, it has developed an ability to determine whether a sentence is grammatically correct or not, thus
refraining from editing in such cases. We will open-source the code to run this experiment and include
the results on our next revision. Since we have presented our model as a baseline, we hope that many
improvements can be made for this aspect in future work, e.g., explicitly being trained to preserve correct
sentences.

Error Type(Full)
Kor-Learner Kor-Native Kor-Lang8

raw decoded raw decoded raw decoded
INS 3352 3321 2004 1998 32665 28040
DEL 1652 1629 806 642 30666 27334

SPELL 6735 5642 3208 1078 19021 14506
PUNCT 0 19 2 79 284 3778
SHORT 363 374 115 277 857 974

WS 108 158 15625 15617 9766 9653
WO 0 0 45 45 701 676

NOUN 4879 5039 1442 1459 20300 20473
VERB 2456 2557 486 523 8616 8805
ADJ 411 444 55 88 1657 1753

CONJ 4917 5269 1699 2009 28775 31078
PART 16700 16692 1164 1195 39648 39175
END 7560 7310 591 683 25456 22495
MOD 1035 1043 238 258 5320 5260
UNK 9251 9940 2495 3921 39101 43132

TOTAL 59419 59437 29975 29872 262833 257132

Table D.3: Total count of edits on each error type on full data. Raw count is derived from KAGAS with raw dataset
pairs, and Tokenized count is derived from KAGAS with tokenized->detokenized (decoded) dataset pairs using the
Korean character BPE tokenizer.

INS DEL SPELL PUNCT SHORT WS WO NOUN VERB ADJ CONJ PART END MOD UNK TOTAL

Dataset
Count

valid

Kor-Learner 450 249 828 0 65 19 0 785 394 77 769 2464 1084 149 1483 8816
Kor-Native 331 94 196 21 34 2336 4 218 74 14 312 198 92 50 633 4607
Kor-Lang8 4179 4131 2092 604 160 1434 95 3067 1350 248 4863 5878 3367 792 6486 38746
Kor-Union 4960 4474 3116 625 259 3789 99 4070 1818 339 5944 8540 4543 991 8602 52169

test

Kor-Learner 517 205 879 3 54 30 0 797 408 63 744 2405 1104 163 1506 8878
Kor-Native 304 108 156 12 38 2383 10 208 90 15 308 176 103 40 578 4529
Kor-Lang8 4187 4164 2151 571 136 1440 95 3119 1323 225 4587 6042 3283 815 6521 38659
Kor-Union 5008 4477 3186 586 228 3853 105 4124 1821 303 5639 8623 4490 1018 8605 52066

Hanspell
(valid)

Kor-Learner

gleu 18.45 18.50 34.48 0.00 27.67 25.77 0.00 23.23 22.42 17.02 20.26 20.54 21.78 17.08 22.20 29.75
prec 28.42 27.78 46.34 100.00 6.67 50.00 100.00 23.54 21.74 23.68 22.99 19.75 28.11 31.94 19.45 24.17
rec 3.71 4.36 17.82 100.00 1.42 9.30 100.00 4.55 3.58 4.09 4.81 3.18 4.29 5.60 4.29 5.37
f0.5 12.18 13.39 35.10 100.00 3.83 26.67 100.00 12.84 10.79 12.10 13.09 9.68 13.31 16.45 11.40 14.21

Kor-Native

gleu 51.37 25.25 54.56 20.14 50.00 58.68 0.00 32.84 37.43 31.26 52.73 36.67 38.76 40.29 56.27 57.97
prec 72.78 60.00 74.44 55.00 90.48 85.30 100.00 60.12 60.34 73.33 74.94 68.18 86.76 82.46 79.77 81.16
rec 46.16 18.18 46.64 16.18 56.72 52.00 16.67 19.80 20.83 30.56 43.35 20.59 32.07 41.96 53.28 47.80
f0.5 65.25 41.10 66.51 37.16 80.85 75.61 50.00 42.72 43.75 57.29 65.40 46.63 64.69 69.12 72.56 71.22

Kor-Lang8

gleu 18.93 13.22 27.21 15.59 23.51 32.10 10.02 16.90 17.91 15.54 16.44 14.69 15.46 13.74 17.12 22.35
prec 33.97 32.04 46.06 29.82 34.62 58.39 22.73 27.45 25.93 22.52 29.70 24.80 26.66 26.03 26.88 29.09
rec 8.91 6.89 20.20 5.88 8.70 27.86 4.17 7.48 5.91 4.76 7.95 5.35 5.39 5.20 7.38 8.51
f0.5 21.74 18.52 36.67 16.43 21.69 47.89 12.02 17.89 15.45 12.89 19.20 14.37 14.89 14.45 17.58 19.61

Kor-Union

gleu 21.27 13.85 31.22 15.75 27.81 47.80 9.48 19.37 19.81 16.72 18.85 17.28 17.54 15.39 21.08 28.46
prec 38.15 31.80 47.84 30.19 43.75 70.90 24.44 28.30 26.43 25.94 32.40 24.57 27.87 29.11 33.09 36.30
rec 10.66 7.10 21.16 6.27 12.38 39.21 4.47 7.61 5.98 5.66 9.12 5.19 5.60 6.31 9.81 11.49
f0.5 25.16 18.76 38.21 17.12 29.03 61.04 12.91 18.34 15.70 15.12 21.45 14.07 15.52 16.90 22.44 25.35

Hanspell
(test)

Kor-Learner

gleu 19.37 15.23 34.88 0.00 28.66 22.64 0.00 23.84 21.45 18.91 22.55 20.55 22.51 21.78 22.55 30.36
prec 26.32 23.68 51.73 0.00 31.58 37.50 100.00 26.76 33.72 7.14 25.56 23.68 25.85 23.08 24.21 29.45
rec 2.60 3.09 18.00 0.00 4.26 4.62 100.00 4.58 5.06 1.19 4.56 3.14 3.32 2.78 4.48 5.33
f0.5 9.32 10.16 37.63 0.00 13.82 15.46 100.00 13.59 15.80 3.57 13.30 10.26 10.97 9.39 12.87 15.46

Kor-Native

gleu 51.18 21.25 62.94 12.02 64.19 56.69 12.02 31.62 43.16 28.11 48.57 35.82 40.25 31.07 54.57 57.08
prec 72.97 69.23 75.38 88.89 92.31 85.28 50.00 57.06 63.86 81.82 78.01 66.06 77.50 68.42 79.82 81.93
rec 45.49 14.95 54.35 15.38 68.57 50.52 11.11 19.28 26.63 26.47 41.89 19.67 31.96 28.57 51.58 47.36
f0.5 65.11 40.11 69.96 45.45 86.33 74.97 29.41 41.00 49.91 57.69 66.53 44.89 60.31 53.50 71.94 71.50

Kor-Lang8

gleu 19.68 13.21 28.19 16.86 23.85 32.35 6.99 17.14 17.36 16.78 17.24 14.84 17.37 15.66 17.36 22.94
prec 32.13 33.07 45.79 29.54 29.09 59.42 24.00 28.75 26.57 28.17 28.20 23.83 26.11 29.26 27.49 29.18
rec 8.42 7.35 20.76 5.96 9.47 29.24 5.24 8.21 5.90 6.17 7.45 5.24 5.70 6.65 7.49 8.74
f0.5 20.56 19.45 36.90 16.49 20.57 49.25 13.99 19.16 15.62 16.45 18.11 13.94 15.21 17.41 17.92 19.88

Kor-Union

gleu 21.89 13.57 31.73 16.81 31.06 46.91 7.51 19.67 19.94 18.31 19.79 17.14 19.17 17.41 21.15 28.82
prec 37.49 33.51 48.21 30.61 46.70 71.98 25.00 29.94 30.32 28.42 32.10 24.37 27.12 31.41 34.07 37.34
rec 10.10 7.40 21.25 6.14 15.48 39.30 5.26 8.14 6.62 6.12 8.60 5.01 5.64 7.08 9.69 11.58
f0.5 24.31 19.64 38.46 17.03 33.28 61.72 14.29 19.50 17.67 16.43 20.76 13.75 15.40 18.61 22.66 25.85

KoBART
+ finetune

(valid)

Kor-Learner

gleu 30.81 29.15 45.31 0.00 48.83 35.07 0.00 38.95 38.51 37.23 35.85 42.99 37.91 32.06 40.01 46.94
prec 47.19 47.74 46.12 100.00 48.60 21.57 100.00 42.50 44.37 46.92 41.95 49.38 46.45 43.99 45.07 43.95
rec 19.11 24.09 28.46 100.00 31.16 8.53 100.00 21.98 21.58 26.79 21.95 28.12 23.92 21.07 25.19 26.35
f0.5 36.47 39.89 41.02 100.00 43.68 16.45 100.00 35.81 36.63 40.76 35.48 42.89 39.08 36.13 38.92 38.76

Kor-Native

gleu 61.12 43.40 51.25 57.13 66.49 71.33 20.20 46.43 57.91 43.30 58.06 57.61 49.85 57.19 65.11 69.37
prec 74.03 69.51 65.32 65.99 85.13 79.25 61.11 69.95 73.05 70.21 66.51 73.68 68.61 77.14 76.50 75.07
rec 51.09 37.37 38.90 47.55 59.70 62.68 33.33 34.64 40.87 37.04 46.89 39.51 38.40 53.87 57.99 56.81
f0.5 67.92 59.31 57.50 61.24 78.44 75.27 52.19 58.08 63.09 59.52 61.36 62.78 59.28 70.99 71.90 70.53

Kor-Lang8

gleu 21.36 18.22 31.65 18.81 25.35 23.19 16.61 21.89 25.20 24.62 23.19 22.90 23.82 20.10 22.50 28.57
prec 35.88 45.60 48.41 37.63 45.81 41.98 38.18 39.35 41.99 45.16 38.59 44.46 42.35 39.19 35.20 37.69
rec 8.70 12.97 21.48 9.36 15.25 13.14 10.17 11.91 13.04 14.44 11.93 13.20 12.53 10.36 10.43 12.64
f0.5 22.05 30.30 38.69 23.46 32.63 29.15 24.61 26.91 29.04 31.65 26.64 30.12 28.67 25.15 23.84 26.96

Kor-Union

gleu 23.59 18.64 36.52 21.15 32.08 36.08 15.50 26.60 29.25 26.64 25.48 27.57 26.69 22.59 26.62 34.07
prec 40.52 46.03 52.46 44.78 51.94 60.81 33.58 41.89 45.21 49.39 41.50 47.83 46.44 45.55 41.35 44.33
rec 10.10 12.50 24.34 11.85 15.97 21.91 8.27 12.74 13.67 15.83 13.18 14.48 13.55 12.97 13.21 15.33
f0.5 25.27 29.92 42.60 28.77 35.74 44.79 20.83 28.72 30.90 34.67 29.00 32.71 31.24 30.27 28.97 32.13

KoBART
+ finetune

(test)

Kor-Learner

gleu 31.05 25.37 42.99 0.00 41.12 25.49 0.00 35.83 35.38 35.25 35.78 40.53 38.22 35.44 38.96 45.06
prec 41.60 43.17 45.89 0.00 51.96 39.43 100.00 42.56 44.24 37.54 40.11 48.88 48.18 48.20 42.49 43.35
rec 15.23 20.10 27.00 0.00 23.64 14.36 100.00 19.89 21.36 19.45 19.89 26.32 23.56 25.29 23.44 24.54
f0.5 30.89 35.09 40.25 0.00 41.86 29.22 100.00 34.65 36.43 31.64 33.33 41.71 39.84 40.80 36.54 37.58

Kor-Native

gleu 57.71 46.07 56.02 39.23 69.69 67.94 42.97 45.61 56.40 59.54 59.45 59.61 47.03 43.38 64.57 67.24
prec 74.75 73.48 61.14 71.10 85.38 79.45 65.97 69.15 73.66 76.32 68.68 77.53 72.41 67.50 77.70 75.34
rec 48.73 40.42 41.54 41.02 66.67 60.17 42.59 34.06 40.70 47.06 48.77 44.63 36.25 41.03 58.03 55.95
f0.5 67.53 63.13 55.84 61.97 80.81 74.65 59.37 57.32 63.39 67.81 63.49 67.54 60.33 59.78 72.77 70.45

Kor-Lang8

gleu 22.29 17.64 31.13 20.61 31.14 21.49 12.42 21.67 24.87 26.36 23.31 22.39 24.62 20.95 22.55 28.48
prec 36.23 45.31 45.98 39.63 49.45 44.27 29.64 39.95 41.03 47.55 38.21 44.18 42.71 40.07 36.67 37.56
rec 8.12 12.14 18.77 9.13 17.26 12.73 6.99 10.85 11.50 13.01 10.92 11.95 11.56 10.20 10.07 11.62
f0.5 21.36 29.25 35.61 23.72 35.96 29.58 17.96 25.97 27.05 31.01 25.43 28.64 27.71 25.23 23.95 25.93

Kor-Union

gleu 23.67 18.22 36.10 20.29 33.42 34.83 13.76 25.09 27.96 29.27 25.95 27.15 27.72 23.68 26.44 33.70
prec 40.58 45.64 52.16 42.35 58.52 63.26 37.89 43.76 46.45 49.16 41.30 49.35 47.51 46.67 42.69 44.75
rec 9.47 12.05 22.54 10.06 19.61 21.48 9.04 12.46 13.29 13.92 12.34 14.30 13.23 12.70 12.68 14.64
f0.5 24.47 29.28 41.30 25.78 41.84 45.48 23.11 29.11 30.98 32.61 28.09 33.10 31.28 30.38 28.97 31.70

KoBART
+ union

+finetune
(valid)

Kor-Learner

gleu 27.37 28.19 45.76 0.00 41.25 35.35 0.00 38.06 35.58 36.79 33.46 38.87 35.67 28.91 37.38 44.66
prec 50.01 55.82 57.04 100.00 55.76 41.75 100.00 52.56 49.49 58.63 49.25 55.87 55.75 54.11 50.97 51.94
rec 14.93 20.69 30.22 100.00 22.22 13.18 100.00 21.13 18.92 26.03 20.07 24.04 21.42 20.27 22.40 23.55
f0.5 33.98 41.64 48.42 100.00 42.79 29.05 100.00 40.49 37.40 46.86 38.14 44.16 42.19 40.53 40.59 41.83

Kor-Native

gleu 52.63 34.43 50.01 44.80 50.88 62.02 19.93 39.88 51.19 41.17 49.43 51.92 44.72 53.01 58.43 61.64
prec 76.54 74.25 75.03 69.65 90.85 88.28 100.00 73.44 83.64 74.32 75.39 77.49 83.49 92.65 80.50 83.95
rec 42.21 25.88 39.75 41.67 49.26 52.94 33.33 25.29 35.32 33.33 39.61 32.57 34.78 48.21 51.52 48.55
f0.5 65.79 54.05 63.71 61.39 77.68 77.88 71.43 53.19 65.61 59.49 63.84 60.73 65.22 78.16 72.35 73.25

Kor-Lang8

gleu 21.40 17.87 32.12 19.70 23.76 24.02 15.11 22.28 25.37 25.51 22.91 22.76 22.95 20.73 22.31 28.51
prec 36.78 45.27 50.17 39.98 44.92 44.67 37.59 40.16 42.00 46.86 38.37 44.85 42.43 42.98 35.47 38.53
rec 8.79 12.58 22.38 9.97 13.71 14.50 8.67 12.08 12.49 14.83 11.55 12.81 11.86 12.05 10.45 12.72
f0.5 22.46 29.79 40.19 24.94 30.86 31.53 22.54 27.41 28.52 32.72 26.20 29.89 28.00 28.39 23.98 27.40

KoBART
+ union

+finetune
(test)

Kor-Learner

gleu 28.45 22.88 43.09 0.00 35.61 25.51 0.00 32.85 33.28 29.59 32.73 37.01 34.93 33.36 35.74 42.66
prec 47.90 47.19 59.30 0.00 64.04 53.56 100.00 50.13 53.62 49.76 47.99 58.27 57.13 56.74 51.51 53.51
rec 12.18 14.61 29.07 0.00 16.31 13.33 100.00 16.98 18.80 15.48 17.25 21.82 19.64 20.49 20.83 21.18
f0.5 30.19 32.62 49.08 0.00 40.36 33.21 100.00 36.05 39.12 34.44 35.37 43.67 41.34 41.91 39.80 41.00

Kor-Native

gleu 47.54 37.94 56.58 30.31 62.21 58.44 32.32 38.89 49.33 58.46 50.69 54.55 44.65 41.05 56.89 59.71
prec 78.05 81.52 81.58 77.16 93.37 88.67 69.84 73.00 83.80 89.15 76.02 85.26 85.53 78.91 82.82 85.47
rec 38.47 29.79 47.22 39.10 60.48 49.78 29.63 25.45 34.67 48.04 39.16 37.43 32.64 41.39 50.80 47.38

f0.5 64.68 60.50 71.15 64.56 84.17 76.68 54.75 53.14 65.28 76.04 63.95 67.89 64.57 66.77 73.54 73.63

Kor-Lang8

gleu 21.94 17.43 32.56 20.44 31.91 22.52 12.10 21.92 24.55 26.88 23.48 22.35 24.73 21.33 22.43 28.65
prec 36.55 44.07 47.59 40.51 49.46 45.42 28.62 40.61 40.65 47.45 38.01 43.70 42.04 42.22 36.49 37.46
rec 8.35 11.89 20.52 10.10 18.44 14.24 7.28 11.47 11.25 13.27 11.20 12.10 11.49 11.31 10.22 12.00
f0.5 21.81 28.56 37.64 25.26 36.93 31.55 18.00 26.90 26.68 31.28 25.68 28.68 27.42 27.26 24.08 26.28

Table D.4: Full scores on all error types, all datasets, on all methods, including valid dataset and test dataset. We
also provide individual dataset count by error types on the top.

